Answer
Verified
461.4k+ views
Hint: Like terms are those having the same group of variables. By matching the variables of a given term with all the options we will get the answer.
Complete step by step answer:
(1) Given term is\[3xy\].
Here we see that term \[3xy\] having a variable $x\, and \,y$ or group of variables \[\left( {xy} \right)\] .
(2) Therefore, all terms which do have variable $x$ and $y$ or group \[\left( {xy} \right)\] as variables will be considered as terms.
(3) On seeing in options given in
Option (a)\[\;2xy\]
Option (b) \[5xy\]
Option (c) \[7xy\]
We see that terms in options \[a,{\text{ }}b{\text{ }}and{\text{ }}c\] have the same group that is the same as the given term.
So, we can say that option a, option b and option c have like terms of \[3xy\].
Therefore, option d (all of these) is the correct option.
Additional Information: In algebra, like terms are terms that have the same variables and powers. The coefficients do not need to match. Unlike terms are two or more terms that are not like terms, i.e. they do not have the same variables or powers. The order of the variables does not matter unless there is a power.
Note: Like terms have the same group of variables (or equal number of variable powers).
Complete step by step answer:
(1) Given term is\[3xy\].
Here we see that term \[3xy\] having a variable $x\, and \,y$ or group of variables \[\left( {xy} \right)\] .
(2) Therefore, all terms which do have variable $x$ and $y$ or group \[\left( {xy} \right)\] as variables will be considered as terms.
(3) On seeing in options given in
Option (a)\[\;2xy\]
Option (b) \[5xy\]
Option (c) \[7xy\]
We see that terms in options \[a,{\text{ }}b{\text{ }}and{\text{ }}c\] have the same group that is the same as the given term.
So, we can say that option a, option b and option c have like terms of \[3xy\].
Therefore, option d (all of these) is the correct option.
Additional Information: In algebra, like terms are terms that have the same variables and powers. The coefficients do not need to match. Unlike terms are two or more terms that are not like terms, i.e. they do not have the same variables or powers. The order of the variables does not matter unless there is a power.
Note: Like terms have the same group of variables (or equal number of variable powers).
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Students Also Read