Answer
Verified
471.9k+ views
Hint: Like terms are those having the same group of variables. By matching the variables of a given term with all the options we will get the answer.
Complete step by step answer:
(1) Given term is\[3xy\].
Here we see that term \[3xy\] having a variable $x\, and \,y$ or group of variables \[\left( {xy} \right)\] .
(2) Therefore, all terms which do have variable $x$ and $y$ or group \[\left( {xy} \right)\] as variables will be considered as terms.
(3) On seeing in options given in
Option (a)\[\;2xy\]
Option (b) \[5xy\]
Option (c) \[7xy\]
We see that terms in options \[a,{\text{ }}b{\text{ }}and{\text{ }}c\] have the same group that is the same as the given term.
So, we can say that option a, option b and option c have like terms of \[3xy\].
Therefore, option d (all of these) is the correct option.
Additional Information: In algebra, like terms are terms that have the same variables and powers. The coefficients do not need to match. Unlike terms are two or more terms that are not like terms, i.e. they do not have the same variables or powers. The order of the variables does not matter unless there is a power.
Note: Like terms have the same group of variables (or equal number of variable powers).
Complete step by step answer:
(1) Given term is\[3xy\].
Here we see that term \[3xy\] having a variable $x\, and \,y$ or group of variables \[\left( {xy} \right)\] .
(2) Therefore, all terms which do have variable $x$ and $y$ or group \[\left( {xy} \right)\] as variables will be considered as terms.
(3) On seeing in options given in
Option (a)\[\;2xy\]
Option (b) \[5xy\]
Option (c) \[7xy\]
We see that terms in options \[a,{\text{ }}b{\text{ }}and{\text{ }}c\] have the same group that is the same as the given term.
So, we can say that option a, option b and option c have like terms of \[3xy\].
Therefore, option d (all of these) is the correct option.
Additional Information: In algebra, like terms are terms that have the same variables and powers. The coefficients do not need to match. Unlike terms are two or more terms that are not like terms, i.e. they do not have the same variables or powers. The order of the variables does not matter unless there is a power.
Note: Like terms have the same group of variables (or equal number of variable powers).
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Students Also Read