Answer
Verified
425.1k+ views
Hint: In this question we will work with the epsilon delta function by solving the example using the same. We must know that the general definition of the epsilon delta function is:
\[\displaystyle \lim_{x \to a}f(x)=\text{L if }\forall \varepsilon >0,\exists \delta >0:\]
$0<|x-a|<\delta \Rightarrow |f(x)-L|<\varepsilon $
Complete step-by-step answer:
The epsilon delta function which is generally represented as the $(\varepsilon -\delta )$ function in mathematics is the property of limits which is used to simplify linear limit questions. This proof is only limited to linear problems which means that there is no power to any term in the whole expression and there are no fractions present in the expression.
The general definition of the epsilon delta function is:
\[\displaystyle \lim_{x \to a}f(x)=\text{L if }\forall \varepsilon >0,\exists \delta >0:\]
$0<|x-a|<\delta \Rightarrow |f(x)-L|<\varepsilon $
Which states that when there is a limit tending to $a$ of a function has a value $L$ for all the values of $\varepsilon $ which are greater than $0$, if there exists $\delta $ which is greater than $0$.
And the value of $|x-a|$ is between $0$ and $\delta $ which implies that value of $|f(x)-L|$ is less than $\varepsilon $.
The epsilon delta function is used to avoid most of the rigor in formal mathematics.
The proof shoes that: $0<|x-a|<\delta \Rightarrow |f(x)-L|<\varepsilon $
Consider the polynomial expression $f(x)={{x}^{2}}-3x+2$
As $x \to 0$, the value of $f(x)\to 0$
Now using the epsilon delta function we need to show that $0<|x-a|<\delta \Rightarrow |f(x)-L|<\varepsilon $
Now observe that:
$\Rightarrow f(x)-2={{x}^{2}}+3x+2-2$
Which can be written as:
$\Rightarrow f(x)-2={{x}^{2}}+3x$
Now this expression can be written in the factorized format as:
$f(x)-2=(x-0)\times (x+3)$
Now from the expression if $(x-0)<\delta $, then you have $(x-0)\times (x+3)<\delta \times (x+3)<\varepsilon $
Now as $x \to 0$, you have $\delta \times (0+3)=3\delta <\varepsilon $ therefore, we choose $\delta =\dfrac{\varepsilon }{3}$.
Note: It is to be remembered that the various symbols which are used to write the epsilon delta function. The symbol $\forall $ stands for “for-all” which means that consider all the elements in the set and $\exists $ sign, which means “there-exists' ' which means that the solution exists in the set.
\[\displaystyle \lim_{x \to a}f(x)=\text{L if }\forall \varepsilon >0,\exists \delta >0:\]
$0<|x-a|<\delta \Rightarrow |f(x)-L|<\varepsilon $
Complete step-by-step answer:
The epsilon delta function which is generally represented as the $(\varepsilon -\delta )$ function in mathematics is the property of limits which is used to simplify linear limit questions. This proof is only limited to linear problems which means that there is no power to any term in the whole expression and there are no fractions present in the expression.
The general definition of the epsilon delta function is:
\[\displaystyle \lim_{x \to a}f(x)=\text{L if }\forall \varepsilon >0,\exists \delta >0:\]
$0<|x-a|<\delta \Rightarrow |f(x)-L|<\varepsilon $
Which states that when there is a limit tending to $a$ of a function has a value $L$ for all the values of $\varepsilon $ which are greater than $0$, if there exists $\delta $ which is greater than $0$.
And the value of $|x-a|$ is between $0$ and $\delta $ which implies that value of $|f(x)-L|$ is less than $\varepsilon $.
The epsilon delta function is used to avoid most of the rigor in formal mathematics.
The proof shoes that: $0<|x-a|<\delta \Rightarrow |f(x)-L|<\varepsilon $
Consider the polynomial expression $f(x)={{x}^{2}}-3x+2$
As $x \to 0$, the value of $f(x)\to 0$
Now using the epsilon delta function we need to show that $0<|x-a|<\delta \Rightarrow |f(x)-L|<\varepsilon $
Now observe that:
$\Rightarrow f(x)-2={{x}^{2}}+3x+2-2$
Which can be written as:
$\Rightarrow f(x)-2={{x}^{2}}+3x$
Now this expression can be written in the factorized format as:
$f(x)-2=(x-0)\times (x+3)$
Now from the expression if $(x-0)<\delta $, then you have $(x-0)\times (x+3)<\delta \times (x+3)<\varepsilon $
Now as $x \to 0$, you have $\delta \times (0+3)=3\delta <\varepsilon $ therefore, we choose $\delta =\dfrac{\varepsilon }{3}$.
Note: It is to be remembered that the various symbols which are used to write the epsilon delta function. The symbol $\forall $ stands for “for-all” which means that consider all the elements in the set and $\exists $ sign, which means “there-exists' ' which means that the solution exists in the set.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE