
Find the maximum and minimum values of ${\cos ^6}\theta + {\sin ^6}\theta $ respectively.
$\left( a \right){\text{ 1 and }}\dfrac{1}{4}$
$\left( b \right){\text{ 1 and 0}}$
$\left( c \right){\text{ 2 and 0}}$
$(d){\text{ 1 and }}\dfrac{1}{2}$
Answer
620.7k+ views
Hint: First simplify the expression using various algebraic & trigonometric identities & then use the range of the trigonometric function in the simplified form.
Complete step-by-step answer:
We have to find the maximum and minimum value of ${\cos ^6}\theta + {\sin ^6}\theta $.
So let’s simplify it first,
Let $f(\theta ) = {\cos ^6}\theta + {\sin ^6}\theta $.
So we can also write this as
$f(\theta ) = {\left( {si{n^2}\theta } \right)^3} + {\left( {{{\cos }^2}\theta } \right)^3}$
Now using ${a^3} + {b^3} = \left( {a + b} \right)\left( {{a^2} + {b^2} - ab} \right)$, we have
$f(\theta ) = \left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right)\left( {{{\sin }^4}\theta + {{\cos }^4}\theta - {{\sin }^2}\theta {{\cos }^2}\theta } \right)$
Using ${\sin ^2}\theta + {\cos ^2}\theta = 1$…………………………… (1)
$f(\theta ) = \left( {{{\sin }^4}\theta + {{\cos }^4}\theta - {{\sin }^2}\theta {{\cos }^2}\theta } \right)$
Now we can write $\left( {{{\sin }^4}\theta + {{\cos }^4}\theta - {{\sin }^2}\theta {{\cos }^2}\theta } \right) = {\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right)^2} - 3{\sin ^2}\theta {\cos ^2}\theta $
So we can write $f(\theta ) = {\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right)^2} - 3{\sin ^2}\theta {\cos ^2}\theta $
Now using equation 1 we have
$f(\theta ) = 1 - 3{\sin ^2}\theta {\cos ^2}\theta $
We can write this as
$f(\theta ) = 1 - \dfrac{3}{4} \times 4{\sin ^2}\theta {\cos ^2}\theta $
Now using $2\sin \theta \cos \theta = \sin 2\theta $
We have $f(\theta ) = \dfrac{3}{4}{\left( {\sin 2\theta } \right)^2}$
Using half angle formulae, $\left( {1 - \cos 4\theta } \right) = 2{\sin ^2}2\theta $
$ \Rightarrow 1 - \dfrac{3}{8}\left( {1 - \cos 4\theta } \right)$
Let’s simplify it further we get $1 - \dfrac{3}{8} + \dfrac{3}{8}\cos 4\theta $
Hence $f(\theta ) = \dfrac{5}{8} + \dfrac{3}{8}\cos 4\theta $……………………………. (2)
Now we know that $ - 1 \leqslant {\text{ cos4}}\theta {\text{ }} \leqslant {\text{ 1}}$ (maximum and minimum inbound of cos x)
$ \Rightarrow - \dfrac{3}{8} \leqslant {\text{ }}\dfrac{3}{8}{\text{cos4}}\theta {\text{ }} \leqslant {\text{ }}\dfrac{3}{8}$
$ \Rightarrow \dfrac{5}{8} - \dfrac{3}{8} \leqslant {\text{ }}\dfrac{5}{8} + \dfrac{3}{8}{\text{cos4}}\theta {\text{ }} \leqslant \dfrac{5}{8} + \dfrac{3}{8}$ (Adding $\dfrac{5}{{8{\text{ }}}}$to all sides of inequality)
Now using equation 2 we know that $f(\theta ) = \dfrac{5}{8} + \dfrac{3}{8}\cos 4\theta $
Hence
$\dfrac{1}{4} \leqslant f(\theta ) \leqslant 1$
Thus the minimum value of the required quantity is $\dfrac{1}{4}$and maximum value is 1
So option (a) is correct.
Note: Whenever we have to solve such problems, try to simplify as much as possible in order to reach the simplest form of expression, then use the min and max inbounds of the simplified part to reach up to the solution.
Complete step-by-step answer:
We have to find the maximum and minimum value of ${\cos ^6}\theta + {\sin ^6}\theta $.
So let’s simplify it first,
Let $f(\theta ) = {\cos ^6}\theta + {\sin ^6}\theta $.
So we can also write this as
$f(\theta ) = {\left( {si{n^2}\theta } \right)^3} + {\left( {{{\cos }^2}\theta } \right)^3}$
Now using ${a^3} + {b^3} = \left( {a + b} \right)\left( {{a^2} + {b^2} - ab} \right)$, we have
$f(\theta ) = \left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right)\left( {{{\sin }^4}\theta + {{\cos }^4}\theta - {{\sin }^2}\theta {{\cos }^2}\theta } \right)$
Using ${\sin ^2}\theta + {\cos ^2}\theta = 1$…………………………… (1)
$f(\theta ) = \left( {{{\sin }^4}\theta + {{\cos }^4}\theta - {{\sin }^2}\theta {{\cos }^2}\theta } \right)$
Now we can write $\left( {{{\sin }^4}\theta + {{\cos }^4}\theta - {{\sin }^2}\theta {{\cos }^2}\theta } \right) = {\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right)^2} - 3{\sin ^2}\theta {\cos ^2}\theta $
So we can write $f(\theta ) = {\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right)^2} - 3{\sin ^2}\theta {\cos ^2}\theta $
Now using equation 1 we have
$f(\theta ) = 1 - 3{\sin ^2}\theta {\cos ^2}\theta $
We can write this as
$f(\theta ) = 1 - \dfrac{3}{4} \times 4{\sin ^2}\theta {\cos ^2}\theta $
Now using $2\sin \theta \cos \theta = \sin 2\theta $
We have $f(\theta ) = \dfrac{3}{4}{\left( {\sin 2\theta } \right)^2}$
Using half angle formulae, $\left( {1 - \cos 4\theta } \right) = 2{\sin ^2}2\theta $
$ \Rightarrow 1 - \dfrac{3}{8}\left( {1 - \cos 4\theta } \right)$
Let’s simplify it further we get $1 - \dfrac{3}{8} + \dfrac{3}{8}\cos 4\theta $
Hence $f(\theta ) = \dfrac{5}{8} + \dfrac{3}{8}\cos 4\theta $……………………………. (2)
Now we know that $ - 1 \leqslant {\text{ cos4}}\theta {\text{ }} \leqslant {\text{ 1}}$ (maximum and minimum inbound of cos x)
$ \Rightarrow - \dfrac{3}{8} \leqslant {\text{ }}\dfrac{3}{8}{\text{cos4}}\theta {\text{ }} \leqslant {\text{ }}\dfrac{3}{8}$
$ \Rightarrow \dfrac{5}{8} - \dfrac{3}{8} \leqslant {\text{ }}\dfrac{5}{8} + \dfrac{3}{8}{\text{cos4}}\theta {\text{ }} \leqslant \dfrac{5}{8} + \dfrac{3}{8}$ (Adding $\dfrac{5}{{8{\text{ }}}}$to all sides of inequality)
Now using equation 2 we know that $f(\theta ) = \dfrac{5}{8} + \dfrac{3}{8}\cos 4\theta $
Hence
$\dfrac{1}{4} \leqslant f(\theta ) \leqslant 1$
Thus the minimum value of the required quantity is $\dfrac{1}{4}$and maximum value is 1
So option (a) is correct.
Note: Whenever we have to solve such problems, try to simplify as much as possible in order to reach the simplest form of expression, then use the min and max inbounds of the simplified part to reach up to the solution.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

