Answer
Verified
500.4k+ views
Hint: First simplify the expression using various algebraic & trigonometric identities & then use the range of the trigonometric function in the simplified form.
Complete step-by-step answer:
We have to find the maximum and minimum value of ${\cos ^6}\theta + {\sin ^6}\theta $.
So let’s simplify it first,
Let $f(\theta ) = {\cos ^6}\theta + {\sin ^6}\theta $.
So we can also write this as
$f(\theta ) = {\left( {si{n^2}\theta } \right)^3} + {\left( {{{\cos }^2}\theta } \right)^3}$
Now using ${a^3} + {b^3} = \left( {a + b} \right)\left( {{a^2} + {b^2} - ab} \right)$, we have
$f(\theta ) = \left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right)\left( {{{\sin }^4}\theta + {{\cos }^4}\theta - {{\sin }^2}\theta {{\cos }^2}\theta } \right)$
Using ${\sin ^2}\theta + {\cos ^2}\theta = 1$…………………………… (1)
$f(\theta ) = \left( {{{\sin }^4}\theta + {{\cos }^4}\theta - {{\sin }^2}\theta {{\cos }^2}\theta } \right)$
Now we can write $\left( {{{\sin }^4}\theta + {{\cos }^4}\theta - {{\sin }^2}\theta {{\cos }^2}\theta } \right) = {\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right)^2} - 3{\sin ^2}\theta {\cos ^2}\theta $
So we can write $f(\theta ) = {\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right)^2} - 3{\sin ^2}\theta {\cos ^2}\theta $
Now using equation 1 we have
$f(\theta ) = 1 - 3{\sin ^2}\theta {\cos ^2}\theta $
We can write this as
$f(\theta ) = 1 - \dfrac{3}{4} \times 4{\sin ^2}\theta {\cos ^2}\theta $
Now using $2\sin \theta \cos \theta = \sin 2\theta $
We have $f(\theta ) = \dfrac{3}{4}{\left( {\sin 2\theta } \right)^2}$
Using half angle formulae, $\left( {1 - \cos 4\theta } \right) = 2{\sin ^2}2\theta $
$ \Rightarrow 1 - \dfrac{3}{8}\left( {1 - \cos 4\theta } \right)$
Let’s simplify it further we get $1 - \dfrac{3}{8} + \dfrac{3}{8}\cos 4\theta $
Hence $f(\theta ) = \dfrac{5}{8} + \dfrac{3}{8}\cos 4\theta $……………………………. (2)
Now we know that $ - 1 \leqslant {\text{ cos4}}\theta {\text{ }} \leqslant {\text{ 1}}$ (maximum and minimum inbound of cos x)
$ \Rightarrow - \dfrac{3}{8} \leqslant {\text{ }}\dfrac{3}{8}{\text{cos4}}\theta {\text{ }} \leqslant {\text{ }}\dfrac{3}{8}$
$ \Rightarrow \dfrac{5}{8} - \dfrac{3}{8} \leqslant {\text{ }}\dfrac{5}{8} + \dfrac{3}{8}{\text{cos4}}\theta {\text{ }} \leqslant \dfrac{5}{8} + \dfrac{3}{8}$ (Adding $\dfrac{5}{{8{\text{ }}}}$to all sides of inequality)
Now using equation 2 we know that $f(\theta ) = \dfrac{5}{8} + \dfrac{3}{8}\cos 4\theta $
Hence
$\dfrac{1}{4} \leqslant f(\theta ) \leqslant 1$
Thus the minimum value of the required quantity is $\dfrac{1}{4}$and maximum value is 1
So option (a) is correct.
Note: Whenever we have to solve such problems, try to simplify as much as possible in order to reach the simplest form of expression, then use the min and max inbounds of the simplified part to reach up to the solution.
Complete step-by-step answer:
We have to find the maximum and minimum value of ${\cos ^6}\theta + {\sin ^6}\theta $.
So let’s simplify it first,
Let $f(\theta ) = {\cos ^6}\theta + {\sin ^6}\theta $.
So we can also write this as
$f(\theta ) = {\left( {si{n^2}\theta } \right)^3} + {\left( {{{\cos }^2}\theta } \right)^3}$
Now using ${a^3} + {b^3} = \left( {a + b} \right)\left( {{a^2} + {b^2} - ab} \right)$, we have
$f(\theta ) = \left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right)\left( {{{\sin }^4}\theta + {{\cos }^4}\theta - {{\sin }^2}\theta {{\cos }^2}\theta } \right)$
Using ${\sin ^2}\theta + {\cos ^2}\theta = 1$…………………………… (1)
$f(\theta ) = \left( {{{\sin }^4}\theta + {{\cos }^4}\theta - {{\sin }^2}\theta {{\cos }^2}\theta } \right)$
Now we can write $\left( {{{\sin }^4}\theta + {{\cos }^4}\theta - {{\sin }^2}\theta {{\cos }^2}\theta } \right) = {\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right)^2} - 3{\sin ^2}\theta {\cos ^2}\theta $
So we can write $f(\theta ) = {\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right)^2} - 3{\sin ^2}\theta {\cos ^2}\theta $
Now using equation 1 we have
$f(\theta ) = 1 - 3{\sin ^2}\theta {\cos ^2}\theta $
We can write this as
$f(\theta ) = 1 - \dfrac{3}{4} \times 4{\sin ^2}\theta {\cos ^2}\theta $
Now using $2\sin \theta \cos \theta = \sin 2\theta $
We have $f(\theta ) = \dfrac{3}{4}{\left( {\sin 2\theta } \right)^2}$
Using half angle formulae, $\left( {1 - \cos 4\theta } \right) = 2{\sin ^2}2\theta $
$ \Rightarrow 1 - \dfrac{3}{8}\left( {1 - \cos 4\theta } \right)$
Let’s simplify it further we get $1 - \dfrac{3}{8} + \dfrac{3}{8}\cos 4\theta $
Hence $f(\theta ) = \dfrac{5}{8} + \dfrac{3}{8}\cos 4\theta $……………………………. (2)
Now we know that $ - 1 \leqslant {\text{ cos4}}\theta {\text{ }} \leqslant {\text{ 1}}$ (maximum and minimum inbound of cos x)
$ \Rightarrow - \dfrac{3}{8} \leqslant {\text{ }}\dfrac{3}{8}{\text{cos4}}\theta {\text{ }} \leqslant {\text{ }}\dfrac{3}{8}$
$ \Rightarrow \dfrac{5}{8} - \dfrac{3}{8} \leqslant {\text{ }}\dfrac{5}{8} + \dfrac{3}{8}{\text{cos4}}\theta {\text{ }} \leqslant \dfrac{5}{8} + \dfrac{3}{8}$ (Adding $\dfrac{5}{{8{\text{ }}}}$to all sides of inequality)
Now using equation 2 we know that $f(\theta ) = \dfrac{5}{8} + \dfrac{3}{8}\cos 4\theta $
Hence
$\dfrac{1}{4} \leqslant f(\theta ) \leqslant 1$
Thus the minimum value of the required quantity is $\dfrac{1}{4}$and maximum value is 1
So option (a) is correct.
Note: Whenever we have to solve such problems, try to simplify as much as possible in order to reach the simplest form of expression, then use the min and max inbounds of the simplified part to reach up to the solution.
Recently Updated Pages
A uniform rod of length L and mass M is pivoted at class 11 physics JEE_Main
A wire of length L and radius r is clamped rigidly class 11 physics JEE_Main
The number of moles of KMnO4 that will be needed to class 11 chemistry JEE_Main
The oxidation process involves class 11 chemistry JEE_Main
A car starts from rest to cover a distance s The coefficient class 11 physics JEE_Main
The transalkenes are formed by the reduction of alkynes class 11 chemistry JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE