Answer
Verified
470.7k+ views
Hint:
Complex number is a number generally represented as\[z = a + ib\], where \[a\] and \[b\] is real number represented on real axis whereas \[i\] is an imaginary unit represented on imaginary axis whose value is \[i = \sqrt { - 1} \]. Modulus of a complex number is length of line segment on real and imaginary axis generally denoted by \[\left| z \right|\] whereas angle subtended by line segment on the real axis is the argument of the matrix denoted by arg (z) calculated by trigonometric value. Argument of complex numbers is denoted by \[\arg (z) = \theta = {\tan ^{ - 1}}\dfrac{b}{a}\].
Complete step by step solution:
The given complex number in question can be written as\[z = a + ib = \sqrt 3 - i\], where \[a = \sqrt 3 \] and \[b = - 1\]
Here the modulus of complex number \[z\] will be
\[
\left| z \right| = \sqrt {{a^2} + {b^2}} \\
= \sqrt {{{\left( {\sqrt 3 } \right)}^2} + {{\left( { - 1} \right)}^2}} \\
= \sqrt {3 + 1} \\
= \sqrt 4 \\
= 2 \\
\]
Hence, the modulus of the complex number will be 2.
Argument of the complex:
\[
\arg (z) = \theta \\
= {\tan ^{ - 1}}\dfrac{b}{a} \\
= {\tan ^{ - 1}}\dfrac{{ - 1}}{{\sqrt 3 }} \\
= 180° - 30° \\
= 150° \\
\]
This can be written in radian as:
\[
\theta = 150 \times \dfrac{\pi }{{180}} \\
= \dfrac{{5\pi }}{6} \\
\]
Note:
Complex numbers are always written in the form of \[z = a + ib\] where $a$ and $b$ are real numbers whereas \[i\] is an imaginary part.
We can convert a degree into radian by multiplying it by\[\dfrac{\pi }{{180}}\].
Complex number is a number generally represented as\[z = a + ib\], where \[a\] and \[b\] is real number represented on real axis whereas \[i\] is an imaginary unit represented on imaginary axis whose value is \[i = \sqrt { - 1} \]. Modulus of a complex number is length of line segment on real and imaginary axis generally denoted by \[\left| z \right|\] whereas angle subtended by line segment on the real axis is the argument of the matrix denoted by arg (z) calculated by trigonometric value. Argument of complex numbers is denoted by \[\arg (z) = \theta = {\tan ^{ - 1}}\dfrac{b}{a}\].
Complete step by step solution:
The given complex number in question can be written as\[z = a + ib = \sqrt 3 - i\], where \[a = \sqrt 3 \] and \[b = - 1\]
Here the modulus of complex number \[z\] will be
\[
\left| z \right| = \sqrt {{a^2} + {b^2}} \\
= \sqrt {{{\left( {\sqrt 3 } \right)}^2} + {{\left( { - 1} \right)}^2}} \\
= \sqrt {3 + 1} \\
= \sqrt 4 \\
= 2 \\
\]
Hence, the modulus of the complex number will be 2.
Argument of the complex:
\[
\arg (z) = \theta \\
= {\tan ^{ - 1}}\dfrac{b}{a} \\
= {\tan ^{ - 1}}\dfrac{{ - 1}}{{\sqrt 3 }} \\
= 180° - 30° \\
= 150° \\
\]
This can be written in radian as:
\[
\theta = 150 \times \dfrac{\pi }{{180}} \\
= \dfrac{{5\pi }}{6} \\
\]
Note:
Complex numbers are always written in the form of \[z = a + ib\] where $a$ and $b$ are real numbers whereas \[i\] is an imaginary part.
We can convert a degree into radian by multiplying it by\[\dfrac{\pi }{{180}}\].
Recently Updated Pages
A particle is undergoing a horizontal circle of radius class 11 physics CBSE
A particle is thrown vertically upwards with a velocity class 11 physics CBSE
A particle is rotated in a vertical circle by connecting class 11 physics CBSE
A particle is projected with a velocity v such that class 11 physics CBSE
A particle is projected with a velocity u making an class 11 physics CBSE
A particle is projected vertically upwards and it reaches class 11 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE