Answer
Verified
497.1k+ views
Hint: Since, we have different terms (in terms that on LHS, there are trigonometric terms containing $\theta $ and on RHS, there is a $2\theta $ term) on LHS and RHS of the trigonometric equation, we solve this trigonometric equation by squaring LHS and RHS terms. This way we will be able to simplify the equation easily. Further, it is also useful to know the formula of sin$2\theta $ in terms of sin$\theta $ and cos$\theta $. This is given by - sin$2\theta $=2 sin$\theta $cos$\theta $
Complete step-by-step solution:
Thus, we have,
$\sin \theta +\cos \theta =\sin 2\theta $
Now, squaring the LHS and RHS, we have,
${{(\sin \theta +\cos \theta )}^{2}}={{(\sin 2\theta )}^{2}}$
\[{{(\sin \theta )}^{2}}+{{(\cos \theta )}^{2}}+2\sin \theta \cos \theta ={{(\sin 2\theta )}^{2}}\]
1+\[\sin 2\theta ={{(\sin 2\theta )}^{2}}\] -- (1)
Since, \[{{(\sin \theta )}^{2}}+{{(\cos \theta )}^{2}}=1\] and \[2\sin \theta \cos \theta =\sin 2\theta \]
Now, solving (1) further,
1+\[\sin 2\theta ={{(\sin 2\theta )}^{2}}\]
Let \[\sin 2\theta \]=t, thus, we have,
1+$t={{t}^{2}}$
${{t}^{2}}-t-1=0$-- (2)
To solve, $a{{x}^{2}}+bx+c=0$, the solution is-
x=$\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
Now solving the equation (2), we have,
t= $\dfrac{1\pm \sqrt{{{1}^{2}}-4(-1)(1)}}{2(1)}$
t=$\dfrac{1\pm \sqrt{5}}{2}$
Now, we can eliminate, t=$\dfrac{1+\sqrt{5}}{2}$=1.618
Since, t=$\sin 2\theta $ would be greater than 1. This would not be possible since, -1$\le $$\sin 2\theta $$\le $1.
Thus, we only have one solution,
t=$\dfrac{1-\sqrt{5}}{2}$
Since, t=$\sin 2\theta $, we have,
$\sin 2\theta $=$\dfrac{1-\sqrt{5}}{2}$
Now, to solve this equation, we will make use of graph,
Now, to get the number of solutions, we have to find the number of intersection of y=$\dfrac{1-\sqrt{5}}{2}$and y=$\sin 2\theta $ between [$\pi ,-\pi $]. (Also, for reference, $\pi $ is approximately 3.14)
Clearly, we see that there are four intersections within the range [$\pi ,-\pi $].
Hence, there are four solutions to the trigonometric equation $\sin \theta +\cos \theta =\sin 2\theta $.
Note: While solving trigonometric equations, we should try to solve the question by bringing LHS and RHS in same degree of angle (that is, in this case, by squaring the LHS and RHS terms, we were eventually able to bring both LHS and RHS in terms of $2\theta $. Finally, we should ensure that the solution is always within the limits [-1,1] since, -1$\le $$\sin x$$\le $1.
Complete step-by-step solution:
Thus, we have,
$\sin \theta +\cos \theta =\sin 2\theta $
Now, squaring the LHS and RHS, we have,
${{(\sin \theta +\cos \theta )}^{2}}={{(\sin 2\theta )}^{2}}$
\[{{(\sin \theta )}^{2}}+{{(\cos \theta )}^{2}}+2\sin \theta \cos \theta ={{(\sin 2\theta )}^{2}}\]
1+\[\sin 2\theta ={{(\sin 2\theta )}^{2}}\] -- (1)
Since, \[{{(\sin \theta )}^{2}}+{{(\cos \theta )}^{2}}=1\] and \[2\sin \theta \cos \theta =\sin 2\theta \]
Now, solving (1) further,
1+\[\sin 2\theta ={{(\sin 2\theta )}^{2}}\]
Let \[\sin 2\theta \]=t, thus, we have,
1+$t={{t}^{2}}$
${{t}^{2}}-t-1=0$-- (2)
To solve, $a{{x}^{2}}+bx+c=0$, the solution is-
x=$\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
Now solving the equation (2), we have,
t= $\dfrac{1\pm \sqrt{{{1}^{2}}-4(-1)(1)}}{2(1)}$
t=$\dfrac{1\pm \sqrt{5}}{2}$
Now, we can eliminate, t=$\dfrac{1+\sqrt{5}}{2}$=1.618
Since, t=$\sin 2\theta $ would be greater than 1. This would not be possible since, -1$\le $$\sin 2\theta $$\le $1.
Thus, we only have one solution,
t=$\dfrac{1-\sqrt{5}}{2}$
Since, t=$\sin 2\theta $, we have,
$\sin 2\theta $=$\dfrac{1-\sqrt{5}}{2}$
Now, to solve this equation, we will make use of graph,
Now, to get the number of solutions, we have to find the number of intersection of y=$\dfrac{1-\sqrt{5}}{2}$and y=$\sin 2\theta $ between [$\pi ,-\pi $]. (Also, for reference, $\pi $ is approximately 3.14)
Clearly, we see that there are four intersections within the range [$\pi ,-\pi $].
Hence, there are four solutions to the trigonometric equation $\sin \theta +\cos \theta =\sin 2\theta $.
Note: While solving trigonometric equations, we should try to solve the question by bringing LHS and RHS in same degree of angle (that is, in this case, by squaring the LHS and RHS terms, we were eventually able to bring both LHS and RHS in terms of $2\theta $. Finally, we should ensure that the solution is always within the limits [-1,1] since, -1$\le $$\sin x$$\le $1.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers