Answer
Verified
430.2k+ views
Hint:n order to determine exact values of all six trigonometric function of the angle whose cosine is given to us in the above question, first assume the a right angled triangle and express all the trigonometric ratios with respect to and in terms of the sides of that triangle and then find all the trigonometric ratios knowing the lengths of hypotenuse, altitude and base.
Complete step by step solution:
We are given a point $\cos x = \dfrac{3}{5}$. Now we assume a right angled triangle ABC and let $\angle BAC = x$
Now, $\angle ACB = {90^ \circ }$.
So, $\cos x = \dfrac{{Base}}{{{\text{Hypotenuse}}}} = \dfrac{3}{5}$.
So, we know the ratio of Base and Hypotenuse. Let ${\text{Base = 3x}}$ and ${\text{Hypotenuse = 5x}}$.
Now, calculating opposite side of the triangle using Pythagoras theorem,
${\left( {Hypotenuse} \right)^2} = {\left( {Base} \right)^2} + {\left( {Altitude} \right)^2}$
$ \Rightarrow {\left( {5x} \right)^2} = {\left( {3x} \right)^2} + {\left( {Altitude} \right)^2}$
$ \Rightarrow {\left( {Altitude} \right)^2} = 25{x^2} - 9{x^2}$
$ \Rightarrow {\left( {Altitude} \right)^2} = 16{x^2}$
$ \Rightarrow Altitude = 4x$
Therefore Calculating all the trigonometric ratios as:
\[\sin x = \dfrac{{{\text{Altitude}}}}{{{\text{Hypotenuse}}}} = \dfrac{4}{5}\]
\[\tan x = \dfrac{{{\text{Altitude}}}}{{{\text{Base}}}} = \dfrac{4}{3}\]
\[\cot x = \dfrac{{{\text{Base}}}}{{{\text{Altitude}}}} = \dfrac{3}{4}\]
\[\cos ecx = \dfrac{{{\text{Hypotenuse}}}}{{{\text{Altitude}}}} = \dfrac{5}{4}\]
\[\sec x = \dfrac{{{\text{Hypotenuse}}}}{{{\text{Base}}}} = \dfrac{5}{3}\]
So, these are the values of trigonometric ratios except cosine which was given beforehand in the question itself.
Note: Trigonometry is one of the significant branches throughout the entire existence of mathematics and has wide ranging applications in various fields of mathematics such as Geometry, Algebra and Calculus. One must be careful while taking values from the trigonometric table and cross-check at least once to avoid any error in the answer. Trigonometric ratios are the ratios of the sides of a triangle and thus the trigonometric ratios can be found by expressing the ratios in the terms of the sides of a triangle.
Complete step by step solution:
We are given a point $\cos x = \dfrac{3}{5}$. Now we assume a right angled triangle ABC and let $\angle BAC = x$
Now, $\angle ACB = {90^ \circ }$.
So, $\cos x = \dfrac{{Base}}{{{\text{Hypotenuse}}}} = \dfrac{3}{5}$.
So, we know the ratio of Base and Hypotenuse. Let ${\text{Base = 3x}}$ and ${\text{Hypotenuse = 5x}}$.
Now, calculating opposite side of the triangle using Pythagoras theorem,
${\left( {Hypotenuse} \right)^2} = {\left( {Base} \right)^2} + {\left( {Altitude} \right)^2}$
$ \Rightarrow {\left( {5x} \right)^2} = {\left( {3x} \right)^2} + {\left( {Altitude} \right)^2}$
$ \Rightarrow {\left( {Altitude} \right)^2} = 25{x^2} - 9{x^2}$
$ \Rightarrow {\left( {Altitude} \right)^2} = 16{x^2}$
$ \Rightarrow Altitude = 4x$
Therefore Calculating all the trigonometric ratios as:
\[\sin x = \dfrac{{{\text{Altitude}}}}{{{\text{Hypotenuse}}}} = \dfrac{4}{5}\]
\[\tan x = \dfrac{{{\text{Altitude}}}}{{{\text{Base}}}} = \dfrac{4}{3}\]
\[\cot x = \dfrac{{{\text{Base}}}}{{{\text{Altitude}}}} = \dfrac{3}{4}\]
\[\cos ecx = \dfrac{{{\text{Hypotenuse}}}}{{{\text{Altitude}}}} = \dfrac{5}{4}\]
\[\sec x = \dfrac{{{\text{Hypotenuse}}}}{{{\text{Base}}}} = \dfrac{5}{3}\]
So, these are the values of trigonometric ratios except cosine which was given beforehand in the question itself.
Note: Trigonometry is one of the significant branches throughout the entire existence of mathematics and has wide ranging applications in various fields of mathematics such as Geometry, Algebra and Calculus. One must be careful while taking values from the trigonometric table and cross-check at least once to avoid any error in the answer. Trigonometric ratios are the ratios of the sides of a triangle and thus the trigonometric ratios can be found by expressing the ratios in the terms of the sides of a triangle.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE