How do you find the perimeter of triangle ABC with vertices A(-5,-2), B(-2,-2), and C(-5,2) ?
Answer
Verified
441.6k+ views
Hint: The given question need to find the perimeter of the triangle, we should know that perimeter of any figure is the sum of the length of the boundaries of the given shape, here for the triangle we are provided with the vertices of the triangle with the help of which we can get side length to get the perimeter.
Formulae Used:
Length between two points =\[ \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} \]
Complete step by step solution:
The question needs to find the perimeter of the given triangle whose vertices are known to us, let’s draw the given triangle. On drawing we get:
Now for finding the length of the sides by using vertices we have to use the standard formulae for line segment for given two points, on solving we get:
\[ \Rightarrow length\,d = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} \]
For the side AB we get: A(-5,-2) and B(-2,-2)
\[\Rightarrow length\,AB = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} \\
\Rightarrow AB = \sqrt {{{( - 2 - ( - 5))}^2} + {{( - 2 - ( - 2))}^2}} = \sqrt {{{(3)}^2} + {{(0)}^2}} = 3\,units \\ \]
For the side BC we get: B(-2,-2) and C(-5,2)
\[\Rightarrow length\,BC = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} \\
\Rightarrow AB = \sqrt {{{( - 5 - ( - 2))}^2} + {{( - 2 - (2))}^2}} = \sqrt {{{( - 3)}^2} + {{(0)}^2}} = 3\,units \\ \]
For the side CA we get: C(-5,2) and A(-5,-2)
\[\Rightarrow length\,CA = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} \\
\Rightarrow AB = \sqrt {{{( - 5 - ( - 5))}^2} + {{( - 2 - (2))}^2}} = \sqrt {{{(0)}^2} + {{(4)}^2}} = 4\,units \\ \]
Now perimeter of the given triangle is the sum of all sides, on solving we get:
\[ \therefore Perimeter\,of\,the\,given\,triangle = length(AB + BC + CA) = 3 + 3 + 4 = 10units\]
Hence we obtain the perimeter of the given figure which is ten units.
Note: The above question can also be solved by plotting the graph on the coordinate axis and then you can easily get the vertices on graph, with the help of these vertices, we can find the length of the sides and then we can easily find the perimeter of the triangle by adding the sides.
Formulae Used:
Length between two points =\[ \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} \]
Complete step by step solution:
The question needs to find the perimeter of the given triangle whose vertices are known to us, let’s draw the given triangle. On drawing we get:
Now for finding the length of the sides by using vertices we have to use the standard formulae for line segment for given two points, on solving we get:
\[ \Rightarrow length\,d = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} \]
For the side AB we get: A(-5,-2) and B(-2,-2)
\[\Rightarrow length\,AB = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} \\
\Rightarrow AB = \sqrt {{{( - 2 - ( - 5))}^2} + {{( - 2 - ( - 2))}^2}} = \sqrt {{{(3)}^2} + {{(0)}^2}} = 3\,units \\ \]
For the side BC we get: B(-2,-2) and C(-5,2)
\[\Rightarrow length\,BC = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} \\
\Rightarrow AB = \sqrt {{{( - 5 - ( - 2))}^2} + {{( - 2 - (2))}^2}} = \sqrt {{{( - 3)}^2} + {{(0)}^2}} = 3\,units \\ \]
For the side CA we get: C(-5,2) and A(-5,-2)
\[\Rightarrow length\,CA = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} \\
\Rightarrow AB = \sqrt {{{( - 5 - ( - 5))}^2} + {{( - 2 - (2))}^2}} = \sqrt {{{(0)}^2} + {{(4)}^2}} = 4\,units \\ \]
Now perimeter of the given triangle is the sum of all sides, on solving we get:
\[ \therefore Perimeter\,of\,the\,given\,triangle = length(AB + BC + CA) = 3 + 3 + 4 = 10units\]
Hence we obtain the perimeter of the given figure which is ten units.
Note: The above question can also be solved by plotting the graph on the coordinate axis and then you can easily get the vertices on graph, with the help of these vertices, we can find the length of the sides and then we can easily find the perimeter of the triangle by adding the sides.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE