
Find the points of trisection of the line segment joining the points :
(3,-2) and (-3,-4).
Answer
611.4k+ views
Hint : In this question, we will use the concept of section formulae of coordinate geometry. This states that the coordinate of the point which divides the line segment joining the points $({x_1},{y_1})$and $({x_2},{y_2})$ internally in the ratio m:n is given by $\left( {x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}},y = \dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right)$. …….(i)
Complete step-by-step solution -
Here , we have given points of the line segment , (3,-2) and (-3,-4)
Comparing this with $({x_1},{y_1})$and $({x_2},{y_2})$, we get
${x_1} = 3,{x_2} = - 3,{y_1} = - 2$ and ${y_2} = - 4$.
We know that trisection means dividing a line segment in three equal parts or dividing a line segment in the ratio 1:2 and 2:1 .
Case 1: when the line segment is divided into m:n as 1:2.
So, m=1 and n=2
Now putting these values in equation (i), we get
$
\Rightarrow \left( {x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}},y = \dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right) \\
\Rightarrow \left( {x = \dfrac{{(1)( - 3) + (2)(3)}}{{1 + 2}},y = \dfrac{{(1)( - 4) + (2)( - 2)}}{{1 + 2}}} \right) \\
\Rightarrow \left( {x = \dfrac{{( - 3) + (6)}}{3},y = \dfrac{{( - 4) + ( - 4)}}{3}} \right) \\
\Rightarrow \left( {x = \dfrac{3}{3},y = \dfrac{{ - 8}}{3}} \right) \\
\Rightarrow \left( {x = 1,y = \dfrac{{ - 8}}{3}} \right) \\
$
Hence, the point $\left( {1,\dfrac{{ - 8}}{3}} \right)$ divides the line segment in 1:2.
Case 2: when the line segment is divided into 2:1.
So we have , m=2 and n=1.
Now put these values in equation (i), we get
$
\Rightarrow \left( {x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}},y = \dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right) \\
\Rightarrow \left( {x = \dfrac{{(2)( - 3) + (1)(3)}}{{2 + 1}},y = \dfrac{{(2)( - 4) + (1)( - 2)}}{{2 + 1}}} \right) \\
\Rightarrow \left( {x = \dfrac{{( - 6) + (3)}}{3},y = \dfrac{{( - 8) + ( - 2)}}{3}} \right) \\
\Rightarrow \left( {x = \dfrac{{ - 3}}{3},y = \dfrac{{ - 10}}{3}} \right) \\
\Rightarrow \left( {x = - 1,y = \dfrac{{ - 10}}{3}} \right) \\
$
Hence , point $\left( { - 1,\dfrac{{ - 10}}{3}} \right)$ divides the line segment in 2:1 .
Therefore the points of trisection joining the given line segments are $\left( {1,\dfrac{{ - 8}}{3}} \right)$ and $\left( { - 1,\dfrac{{ - 10}}{3}} \right)$ .
Note : In this type of question we have to remember the concept of the section formulae .first we have to find out the required values and then we will make two case , in one case the ratio m:n is 1:2 and in other case the ratio m:n is 2:1 after that by putting those values in section formulae i.e. $\left( {x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}},y = \dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right)$ we will get the required points .
Complete step-by-step solution -
Here , we have given points of the line segment , (3,-2) and (-3,-4)
Comparing this with $({x_1},{y_1})$and $({x_2},{y_2})$, we get
${x_1} = 3,{x_2} = - 3,{y_1} = - 2$ and ${y_2} = - 4$.
We know that trisection means dividing a line segment in three equal parts or dividing a line segment in the ratio 1:2 and 2:1 .
Case 1: when the line segment is divided into m:n as 1:2.
So, m=1 and n=2
Now putting these values in equation (i), we get
$
\Rightarrow \left( {x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}},y = \dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right) \\
\Rightarrow \left( {x = \dfrac{{(1)( - 3) + (2)(3)}}{{1 + 2}},y = \dfrac{{(1)( - 4) + (2)( - 2)}}{{1 + 2}}} \right) \\
\Rightarrow \left( {x = \dfrac{{( - 3) + (6)}}{3},y = \dfrac{{( - 4) + ( - 4)}}{3}} \right) \\
\Rightarrow \left( {x = \dfrac{3}{3},y = \dfrac{{ - 8}}{3}} \right) \\
\Rightarrow \left( {x = 1,y = \dfrac{{ - 8}}{3}} \right) \\
$
Hence, the point $\left( {1,\dfrac{{ - 8}}{3}} \right)$ divides the line segment in 1:2.
Case 2: when the line segment is divided into 2:1.
So we have , m=2 and n=1.
Now put these values in equation (i), we get
$
\Rightarrow \left( {x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}},y = \dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right) \\
\Rightarrow \left( {x = \dfrac{{(2)( - 3) + (1)(3)}}{{2 + 1}},y = \dfrac{{(2)( - 4) + (1)( - 2)}}{{2 + 1}}} \right) \\
\Rightarrow \left( {x = \dfrac{{( - 6) + (3)}}{3},y = \dfrac{{( - 8) + ( - 2)}}{3}} \right) \\
\Rightarrow \left( {x = \dfrac{{ - 3}}{3},y = \dfrac{{ - 10}}{3}} \right) \\
\Rightarrow \left( {x = - 1,y = \dfrac{{ - 10}}{3}} \right) \\
$
Hence , point $\left( { - 1,\dfrac{{ - 10}}{3}} \right)$ divides the line segment in 2:1 .
Therefore the points of trisection joining the given line segments are $\left( {1,\dfrac{{ - 8}}{3}} \right)$ and $\left( { - 1,\dfrac{{ - 10}}{3}} \right)$ .
Note : In this type of question we have to remember the concept of the section formulae .first we have to find out the required values and then we will make two case , in one case the ratio m:n is 1:2 and in other case the ratio m:n is 2:1 after that by putting those values in section formulae i.e. $\left( {x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}},y = \dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right)$ we will get the required points .
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

