![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
Find the points of trisection of the line segment joining the points :
(3,-2) and (-3,-4).
Answer
503.4k+ views
Hint : In this question, we will use the concept of section formulae of coordinate geometry. This states that the coordinate of the point which divides the line segment joining the points $({x_1},{y_1})$and $({x_2},{y_2})$ internally in the ratio m:n is given by $\left( {x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}},y = \dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right)$. …….(i)
Complete step-by-step solution -
Here , we have given points of the line segment , (3,-2) and (-3,-4)
Comparing this with $({x_1},{y_1})$and $({x_2},{y_2})$, we get
${x_1} = 3,{x_2} = - 3,{y_1} = - 2$ and ${y_2} = - 4$.
We know that trisection means dividing a line segment in three equal parts or dividing a line segment in the ratio 1:2 and 2:1 .
Case 1: when the line segment is divided into m:n as 1:2.
So, m=1 and n=2
Now putting these values in equation (i), we get
$
\Rightarrow \left( {x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}},y = \dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right) \\
\Rightarrow \left( {x = \dfrac{{(1)( - 3) + (2)(3)}}{{1 + 2}},y = \dfrac{{(1)( - 4) + (2)( - 2)}}{{1 + 2}}} \right) \\
\Rightarrow \left( {x = \dfrac{{( - 3) + (6)}}{3},y = \dfrac{{( - 4) + ( - 4)}}{3}} \right) \\
\Rightarrow \left( {x = \dfrac{3}{3},y = \dfrac{{ - 8}}{3}} \right) \\
\Rightarrow \left( {x = 1,y = \dfrac{{ - 8}}{3}} \right) \\
$
Hence, the point $\left( {1,\dfrac{{ - 8}}{3}} \right)$ divides the line segment in 1:2.
Case 2: when the line segment is divided into 2:1.
So we have , m=2 and n=1.
Now put these values in equation (i), we get
$
\Rightarrow \left( {x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}},y = \dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right) \\
\Rightarrow \left( {x = \dfrac{{(2)( - 3) + (1)(3)}}{{2 + 1}},y = \dfrac{{(2)( - 4) + (1)( - 2)}}{{2 + 1}}} \right) \\
\Rightarrow \left( {x = \dfrac{{( - 6) + (3)}}{3},y = \dfrac{{( - 8) + ( - 2)}}{3}} \right) \\
\Rightarrow \left( {x = \dfrac{{ - 3}}{3},y = \dfrac{{ - 10}}{3}} \right) \\
\Rightarrow \left( {x = - 1,y = \dfrac{{ - 10}}{3}} \right) \\
$
Hence , point $\left( { - 1,\dfrac{{ - 10}}{3}} \right)$ divides the line segment in 2:1 .
Therefore the points of trisection joining the given line segments are $\left( {1,\dfrac{{ - 8}}{3}} \right)$ and $\left( { - 1,\dfrac{{ - 10}}{3}} \right)$ .
Note : In this type of question we have to remember the concept of the section formulae .first we have to find out the required values and then we will make two case , in one case the ratio m:n is 1:2 and in other case the ratio m:n is 2:1 after that by putting those values in section formulae i.e. $\left( {x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}},y = \dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right)$ we will get the required points .
Complete step-by-step solution -
Here , we have given points of the line segment , (3,-2) and (-3,-4)
Comparing this with $({x_1},{y_1})$and $({x_2},{y_2})$, we get
${x_1} = 3,{x_2} = - 3,{y_1} = - 2$ and ${y_2} = - 4$.
We know that trisection means dividing a line segment in three equal parts or dividing a line segment in the ratio 1:2 and 2:1 .
Case 1: when the line segment is divided into m:n as 1:2.
So, m=1 and n=2
Now putting these values in equation (i), we get
$
\Rightarrow \left( {x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}},y = \dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right) \\
\Rightarrow \left( {x = \dfrac{{(1)( - 3) + (2)(3)}}{{1 + 2}},y = \dfrac{{(1)( - 4) + (2)( - 2)}}{{1 + 2}}} \right) \\
\Rightarrow \left( {x = \dfrac{{( - 3) + (6)}}{3},y = \dfrac{{( - 4) + ( - 4)}}{3}} \right) \\
\Rightarrow \left( {x = \dfrac{3}{3},y = \dfrac{{ - 8}}{3}} \right) \\
\Rightarrow \left( {x = 1,y = \dfrac{{ - 8}}{3}} \right) \\
$
Hence, the point $\left( {1,\dfrac{{ - 8}}{3}} \right)$ divides the line segment in 1:2.
Case 2: when the line segment is divided into 2:1.
So we have , m=2 and n=1.
Now put these values in equation (i), we get
$
\Rightarrow \left( {x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}},y = \dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right) \\
\Rightarrow \left( {x = \dfrac{{(2)( - 3) + (1)(3)}}{{2 + 1}},y = \dfrac{{(2)( - 4) + (1)( - 2)}}{{2 + 1}}} \right) \\
\Rightarrow \left( {x = \dfrac{{( - 6) + (3)}}{3},y = \dfrac{{( - 8) + ( - 2)}}{3}} \right) \\
\Rightarrow \left( {x = \dfrac{{ - 3}}{3},y = \dfrac{{ - 10}}{3}} \right) \\
\Rightarrow \left( {x = - 1,y = \dfrac{{ - 10}}{3}} \right) \\
$
Hence , point $\left( { - 1,\dfrac{{ - 10}}{3}} \right)$ divides the line segment in 2:1 .
Therefore the points of trisection joining the given line segments are $\left( {1,\dfrac{{ - 8}}{3}} \right)$ and $\left( { - 1,\dfrac{{ - 10}}{3}} \right)$ .
![seo images](https://www.vedantu.com/question-sets/d5f768d3-2a15-4a3b-ada7-caefc4a839a8767528892749865108.png)
Note : In this type of question we have to remember the concept of the section formulae .first we have to find out the required values and then we will make two case , in one case the ratio m:n is 1:2 and in other case the ratio m:n is 2:1 after that by putting those values in section formulae i.e. $\left( {x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}},y = \dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right)$ we will get the required points .
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What percentage of the area in India is covered by class 10 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The area of a 6m wide road outside a garden in all class 10 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What is the electric flux through a cube of side 1 class 10 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The radius and height of a cylinder are in the ratio class 10 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Why is there a time difference of about 5 hours between class 10 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Change the following sentences into negative and interrogative class 10 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What constitutes the central nervous system How are class 10 biology CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Write a letter to the principal requesting him to grant class 10 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)