Find the polar equation of a circle, the initial line being a tangent. What does it become if the origin is on the circumference?
Answer
Verified
473.1k+ views
Hint: To find the polar equation of a circle, we need to find the equation of the circle by considering angle as ‘m’ and radius as ‘a’ and then by using the polar coordinates of the circle, the polar equation can be calculated. Polar equation of a circle refers to the equation of circle expressed in polar coordinates, which includes angle of circle.
Complete step-by-step answer:
Let us construct a figure of a circle in the coordinate axis with a tangent along x – axis and radius ‘a’.
The angle subtended by the radius of the circle with the x – axis is ‘m’ as shown in the figure. Using this we can write the coordinates of the center of the circle (a cot m, a) from the figure.
In the circle we have assumed m as angle and the radius of circle is a. The circle is shown in the figure, equation of the circle will be
We know the equation of a circle is given by the formula, ${\left( {{\text{x - a}}} \right)^2} + {\left( {{\text{y - b}}} \right)^2} = {{\text{r}}^2}$, where (a, b) is the center of the circle and ‘r’ is the radius of the circle. Therefore,
${(x - a\cot m)^2} + {(y - a)^2} = {a^2}$ (Equation of circle)
Using the radius, we can write the x and y intercepts as r cosθ and r sinθ respectively. Here radius = a.
Converting it to polar form i.e. replacing x and y with $r\cos \theta $and$r\sin \theta $, we get
\[{(r\cos \theta - a\cot m)^2} + {(r\sin \theta - a)^2} = {a^2}\]
Opening the square we get,
\[
\Rightarrow {r^2}{\cos ^2}\theta + {a^2}{\cot ^2}m - 2ar\cos \theta \cot m + {r^2}{\sin ^2}\theta + {a^2} - 2ar\sin \theta = {a^2} \\
\Rightarrow {r^2} + {a^2}{\cot ^2}m - 2r\cos \theta (a\cot m) - 2ar\sin \theta = 0 \\
\]
If the origin is on circumference, put $a\cot m = 0$ we get
$ \Rightarrow r = 2a\sin \theta $.
This is the required equation.
Note: In order to solve this type of questions the key is to just follow the steps of converting the normal coordinates to polar coordinates and making an appropriate construction to be able to solve the problem easily according to question and assigning out variables. We have to change it in polar form as done above.
Complete step-by-step answer:
Let us construct a figure of a circle in the coordinate axis with a tangent along x – axis and radius ‘a’.
The angle subtended by the radius of the circle with the x – axis is ‘m’ as shown in the figure. Using this we can write the coordinates of the center of the circle (a cot m, a) from the figure.
In the circle we have assumed m as angle and the radius of circle is a. The circle is shown in the figure, equation of the circle will be
We know the equation of a circle is given by the formula, ${\left( {{\text{x - a}}} \right)^2} + {\left( {{\text{y - b}}} \right)^2} = {{\text{r}}^2}$, where (a, b) is the center of the circle and ‘r’ is the radius of the circle. Therefore,
${(x - a\cot m)^2} + {(y - a)^2} = {a^2}$ (Equation of circle)
Using the radius, we can write the x and y intercepts as r cosθ and r sinθ respectively. Here radius = a.
Converting it to polar form i.e. replacing x and y with $r\cos \theta $and$r\sin \theta $, we get
\[{(r\cos \theta - a\cot m)^2} + {(r\sin \theta - a)^2} = {a^2}\]
Opening the square we get,
\[
\Rightarrow {r^2}{\cos ^2}\theta + {a^2}{\cot ^2}m - 2ar\cos \theta \cot m + {r^2}{\sin ^2}\theta + {a^2} - 2ar\sin \theta = {a^2} \\
\Rightarrow {r^2} + {a^2}{\cot ^2}m - 2r\cos \theta (a\cot m) - 2ar\sin \theta = 0 \\
\]
If the origin is on circumference, put $a\cot m = 0$ we get
$ \Rightarrow r = 2a\sin \theta $.
This is the required equation.
Note: In order to solve this type of questions the key is to just follow the steps of converting the normal coordinates to polar coordinates and making an appropriate construction to be able to solve the problem easily according to question and assigning out variables. We have to change it in polar form as done above.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE