Answer
Verified
452.1k+ views
Hint: We recall the definition of position vectors. We use the fact that the position vector of any point P that lies on the line joining two points A,B whose positions vector are known as $\overrightarrow{a},\overrightarrow{b}$ is given by $\overrightarrow{a}+\lambda \overrightarrow{d}$ where $\lambda $ is any real scalar and $\overrightarrow{d}=\overrightarrow{b}-\overrightarrow{a}$ is the distance vector.\[\]
Complete step by step answer:
We can represent any point in the space $P\left( x,y,z \right)$ as vector with original O as the initial point and P as the final point in terms of orthogonal unit vectors $\hat{i}$,$\hat{j}$ and $\hat{k}$ as $\overrightarrow{OP}=\overrightarrow{p}=x\hat{i}+y\hat{j}+\hat{k}$. This vector is called position vector, location vector or radius vector. We have the rough figure of the position vector $\overrightarrow{p}$ below. \[\]
If there are $\overrightarrow{a}=\left( {{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} \right),\overrightarrow{b}=\left( {{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k} \right)$ be two position vectors of two points then the position vector of any point on the line joining the two points is given with a real scalar $\lambda $as;
\[\begin{align}
& \overrightarrow{p}=\overrightarrow{a}+\lambda \overrightarrow{d} \\
& \Rightarrow \overrightarrow{p}=\overrightarrow{a}+\lambda \left( \overrightarrow{b}-\overrightarrow{a} \right) \\
& \Rightarrow \overrightarrow{p}=\left( {{a}_{1}}+\lambda \left( {{b}_{1}}-{{a}_{1}} \right) \right)\hat{i}+\left( {{a}_{2}}+\lambda {{b}_{2}}-{{a}_{2}} \right)\hat{j}+\left( {{a}_{3}}+\lambda \left( {{b}_{3}}-{{a}_{3}} \right) \right)\hat{k} \\
\end{align}\]
We are given in the question the position vectors of two points as $\hat{i}+\hat{j}-\hat{k}$ and $\hat{i}-\hat{j}+\hat{k}$. Let us denote the two points as A and B and the position vectors as $\overrightarrow{a}=\hat{i}+\hat{j}-\hat{k}$ and $\overrightarrow{b}=\hat{i}-\hat{j}+\hat{k}$.So we have
\[\begin{align}
& \overrightarrow{a}=\left( {{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} \right)=\hat{i}+\hat{j}-\hat{k} \\
& \overrightarrow{b}=\left( {{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k} \right)=\hat{i}-\hat{j}+\hat{k} \\
\end{align}\]
We compare the respective components and we get;
\[\begin{align}
& \Rightarrow {{a}_{1}}=1,{{a}_{2}}=1,{{a}_{3}}=-1 \\
& \Rightarrow {{b}_{1}}=1,{{b}_{2}}=-1,{{b}_{3}}=1 \\
\end{align}\]
Let P be any point on the line segment joining A and B.The position vector of P is;
\[\begin{align}
& \overrightarrow{p}=\overrightarrow{a}+\lambda \overrightarrow{b}=\left( {{a}_{1}}+\lambda \left( {{b}_{1}}-{{a}_{1}} \right) \right)\hat{i}+\left( {{a}_{2}}+\lambda \left( {{b}_{2}}-{{a}_{2}} \right) \right)\hat{j}+\left( {{a}_{3}}+\lambda \left( {{b}_{3}}-{{a}_{3}} \right) \right)\hat{k} \\
& \Rightarrow \overrightarrow{p}=\left( 1+\lambda \cdot 0 \right)\hat{i}+\left( 1+\lambda \left( -2 \right) \right)\hat{j}+\left( -1+\lambda \cdot 2 \right)\hat{k} \\
& \Rightarrow \overrightarrow{p}=\hat{i}+\left( 1-2\lambda \right)\hat{j}+\left( -1+2\lambda \right)\hat{k} \\
\end{align}\]
Note: We also know that $\hat{i}$,$\hat{j}$ and $\hat{k}$ are orthogonal unit vectors (vectors with magnitude 1) along $x,y$ and $z$ axes respectively. If we want to find the position vector of midpoint , it is is given by $\dfrac{\overrightarrow{a}+\overrightarrow{b}}{2}$ and the position vector of any point that divides the line segment AB at a ratio $m:n$ is given by $\dfrac{m\overrightarrow{a}+n\overrightarrow{b}}{m+n}$. We note that the position vector of the point system reference is unique.
Complete step by step answer:
We can represent any point in the space $P\left( x,y,z \right)$ as vector with original O as the initial point and P as the final point in terms of orthogonal unit vectors $\hat{i}$,$\hat{j}$ and $\hat{k}$ as $\overrightarrow{OP}=\overrightarrow{p}=x\hat{i}+y\hat{j}+\hat{k}$. This vector is called position vector, location vector or radius vector. We have the rough figure of the position vector $\overrightarrow{p}$ below. \[\]
If there are $\overrightarrow{a}=\left( {{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} \right),\overrightarrow{b}=\left( {{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k} \right)$ be two position vectors of two points then the position vector of any point on the line joining the two points is given with a real scalar $\lambda $as;
\[\begin{align}
& \overrightarrow{p}=\overrightarrow{a}+\lambda \overrightarrow{d} \\
& \Rightarrow \overrightarrow{p}=\overrightarrow{a}+\lambda \left( \overrightarrow{b}-\overrightarrow{a} \right) \\
& \Rightarrow \overrightarrow{p}=\left( {{a}_{1}}+\lambda \left( {{b}_{1}}-{{a}_{1}} \right) \right)\hat{i}+\left( {{a}_{2}}+\lambda {{b}_{2}}-{{a}_{2}} \right)\hat{j}+\left( {{a}_{3}}+\lambda \left( {{b}_{3}}-{{a}_{3}} \right) \right)\hat{k} \\
\end{align}\]
We are given in the question the position vectors of two points as $\hat{i}+\hat{j}-\hat{k}$ and $\hat{i}-\hat{j}+\hat{k}$. Let us denote the two points as A and B and the position vectors as $\overrightarrow{a}=\hat{i}+\hat{j}-\hat{k}$ and $\overrightarrow{b}=\hat{i}-\hat{j}+\hat{k}$.So we have
\[\begin{align}
& \overrightarrow{a}=\left( {{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} \right)=\hat{i}+\hat{j}-\hat{k} \\
& \overrightarrow{b}=\left( {{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k} \right)=\hat{i}-\hat{j}+\hat{k} \\
\end{align}\]
We compare the respective components and we get;
\[\begin{align}
& \Rightarrow {{a}_{1}}=1,{{a}_{2}}=1,{{a}_{3}}=-1 \\
& \Rightarrow {{b}_{1}}=1,{{b}_{2}}=-1,{{b}_{3}}=1 \\
\end{align}\]
Let P be any point on the line segment joining A and B.The position vector of P is;
\[\begin{align}
& \overrightarrow{p}=\overrightarrow{a}+\lambda \overrightarrow{b}=\left( {{a}_{1}}+\lambda \left( {{b}_{1}}-{{a}_{1}} \right) \right)\hat{i}+\left( {{a}_{2}}+\lambda \left( {{b}_{2}}-{{a}_{2}} \right) \right)\hat{j}+\left( {{a}_{3}}+\lambda \left( {{b}_{3}}-{{a}_{3}} \right) \right)\hat{k} \\
& \Rightarrow \overrightarrow{p}=\left( 1+\lambda \cdot 0 \right)\hat{i}+\left( 1+\lambda \left( -2 \right) \right)\hat{j}+\left( -1+\lambda \cdot 2 \right)\hat{k} \\
& \Rightarrow \overrightarrow{p}=\hat{i}+\left( 1-2\lambda \right)\hat{j}+\left( -1+2\lambda \right)\hat{k} \\
\end{align}\]
Note: We also know that $\hat{i}$,$\hat{j}$ and $\hat{k}$ are orthogonal unit vectors (vectors with magnitude 1) along $x,y$ and $z$ axes respectively. If we want to find the position vector of midpoint , it is is given by $\dfrac{\overrightarrow{a}+\overrightarrow{b}}{2}$ and the position vector of any point that divides the line segment AB at a ratio $m:n$ is given by $\dfrac{m\overrightarrow{a}+n\overrightarrow{b}}{m+n}$. We note that the position vector of the point system reference is unique.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Which of the following reagents cannot distinguish class 12 chemistry CBSE
Which of the following reagents cannot distinguish class 12 chemistry CBSE
Which of the following reagents cannot distinguish class 12 chemistry CBSE
Which of the following reagents cannot distinguish class 12 chemistry CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE