Answer
Verified
462.9k+ views
Hint: To solve this problem we have to first know what is the power set. Power set is a set of all the subsets of the given set. So using this definition we will find all the subsets of the given set A and then combine them to form a set and that set will be the power set of A. After that we will match out which option satisfies our answer and find the correct answer.
Complete step by step answer:
We are given a set A = { \[\phi \], { \[\phi \] } },
Now we have to find the power set of this set A,
But before that we need to know that what do we mean by power set,
According to the definition of the power set, it is a set of all the subsets of the given set,
For example consider we have a set S = { a, b, c }
Now all the subsets of this set will be,
{}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}
There are total 8 subsets hence power set of set S, P(S) is given as,
P(S) = { {}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c} }
Now coming to the given question we have a set A given as,
A = { \[\phi \], { \[\phi \] } },
All the subsets of the A are given as,
\[\phi \], { \[\phi \] } , {{ \[\phi \] }}, { \[\phi \], { \[\phi \] } },
Hence we get power set of A, P(A) as,
P(A) = { \[\phi \], { \[\phi \] } , {{ \[\phi \] }}, { \[\phi \], { \[\phi \] } } }
We will substitute { \[\phi \], { \[\phi \] } } equal to A as options given have set A in it, so we get
P(A) = { \[\phi \], { \[\phi \] } , {{ \[\phi \] }}, A }
So, the correct answer is “Option D”.
Note: To solve this problem you should have prior knowledge about the power set otherwise you would not be able to solve this question. You can also note that if the given set has n elements in it then its power set will have ${{2}^{n}}$ elements in it. Using this you can eliminate the options which have more or less number of elements than ${{2}^{n}}$ and solve the question more easily.
Complete step by step answer:
We are given a set A = { \[\phi \], { \[\phi \] } },
Now we have to find the power set of this set A,
But before that we need to know that what do we mean by power set,
According to the definition of the power set, it is a set of all the subsets of the given set,
For example consider we have a set S = { a, b, c }
Now all the subsets of this set will be,
{}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}
There are total 8 subsets hence power set of set S, P(S) is given as,
P(S) = { {}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c} }
Now coming to the given question we have a set A given as,
A = { \[\phi \], { \[\phi \] } },
All the subsets of the A are given as,
\[\phi \], { \[\phi \] } , {{ \[\phi \] }}, { \[\phi \], { \[\phi \] } },
Hence we get power set of A, P(A) as,
P(A) = { \[\phi \], { \[\phi \] } , {{ \[\phi \] }}, { \[\phi \], { \[\phi \] } } }
We will substitute { \[\phi \], { \[\phi \] } } equal to A as options given have set A in it, so we get
P(A) = { \[\phi \], { \[\phi \] } , {{ \[\phi \] }}, A }
So, the correct answer is “Option D”.
Note: To solve this problem you should have prior knowledge about the power set otherwise you would not be able to solve this question. You can also note that if the given set has n elements in it then its power set will have ${{2}^{n}}$ elements in it. Using this you can eliminate the options which have more or less number of elements than ${{2}^{n}}$ and solve the question more easily.
Recently Updated Pages
For a simple pendulum a graph is plotted between its class 11 physics JEE_Main
A particle executes simple harmonic motion with a frequency class 11 physics JEE_Main
At what temperature will the total KE of 03 mol of class 11 chemistry JEE_Main
ABC is a right angled triangular plate of uniform thickness class 11 phy sec 1 JEE_Main
The linear velocity perpendicular to the radius vector class 11 physics JEE_Main
The normality of 03 M phosphorus acid H3PO3 is class 11 chemistry NEET_UG
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
State and prove Bernoullis theorem class 11 physics CBSE