Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

Find the principal value of sin1(32)

Answer
VerifiedVerified
521.7k+ views
like imagedislike image
Hint: First of all, use sin1(x)=sin1x. Now consider the range of the principal value of sin1x. Now find the angle θ in this range at which sinθ=32 or the value of sin1(32) to get the desired result.

Complete step-by-step answer:
In this question, we have to find the principal value of sin1(32).
First of all, let us consider the expression given in the question,
E=sin1(32)
We know that, sin1(x)=sin1(x). By using this in the above expression, we get,
E=sin1(32)....(i)
Now, let us draw the table for trigonometric ratios of general angles.
seo images

Now we know that the range of principal value of sin1(x) lies between [π2,π2].
From the table of general trigonometric ratios, we get,
sin(π3)=32
By taking sin1 on both the sides, we get,
sin1sin(π3)=sin1(32)
We know that for π2xπ2,sin1sin(x)=x. So, we get,
π3=sin1(32)....(ii)
Now by substituting the value of sin1(32) in equation (i), we get,
E=π3
Hence, we get the principal value of sin1(32) as π3.

Note: In this question, first of all, students must take care that the value of the angle must lie in the range of sin1x which is [π2,π2]. For example, we know that sin(2π3) is also equal to 32 but we never take sin1(32) as 2π3 because 2π3 does not lie in the range of sin1x. In the case of inverse trigonometric functions, students should remember the range and domain of various functions as they are very useful while solving the questions.