Answer
Verified
481.5k+ views
Hint: First of all, use \[{{\sin }^{-1}}\left( -x \right)=-{{\sin }^{-1}}x\]. Now consider the range of the principal value of \[{{\sin }^{-1}}x\]. Now find the angle \[\theta \] in this range at which \[\sin \theta =\dfrac{\sqrt{3}}{2}\] or the value of \[{{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)\] to get the desired result.
Complete step-by-step answer:
In this question, we have to find the principal value of \[{{\sin }^{-1}}\left( -\dfrac{\sqrt{3}}{2} \right)\].
First of all, let us consider the expression given in the question,
\[E={{\sin }^{-1}}\left( -\dfrac{\sqrt{3}}{2} \right)\]
We know that, \[{{\sin }^{-1}}\left( -x \right)=-{{\sin }^{-1}}\left( x \right)\]. By using this in the above expression, we get,
\[E=-{{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)....\left( i \right)\]
Now, let us draw the table for trigonometric ratios of general angles.
Now we know that the range of principal value of \[{{\sin }^{-1}}\left( x \right)\] lies between \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\].
From the table of general trigonometric ratios, we get,
\[\sin \left( \dfrac{\pi }{3} \right)=\dfrac{\sqrt{3}}{2}\]
By taking \[{{\sin }^{-1}}\] on both the sides, we get,
\[{{\sin }^{-1}}\sin \left( \dfrac{\pi }{3} \right)={{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)\]
We know that for \[\dfrac{-\pi }{2}\le x\le \dfrac{\pi }{2},{{\sin }^{-1}}\sin \left( x \right)=x\]. So, we get,
\[\dfrac{\pi }{3}={{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)....\left( ii \right)\]
Now by substituting the value of \[{{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)\] in equation (i), we get,
\[E=\dfrac{-\pi }{3}\]
Hence, we get the principal value of \[{{\sin }^{-1}}\left( -\dfrac{\sqrt{3}}{2} \right)\] as \[\dfrac{-\pi }{3}\].
Note: In this question, first of all, students must take care that the value of the angle must lie in the range of \[{{\sin }^{-1}}x\] which is \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\]. For example, we know that \[\sin \left( \dfrac{2\pi }{3} \right)\] is also equal to \[\dfrac{\sqrt{3}}{2}\] but we never take \[{{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)\] as \[\dfrac{2\pi }{3}\] because \[\dfrac{2\pi }{3}\] does not lie in the range of \[{{\sin }^{-1}}x\]. In the case of inverse trigonometric functions, students should remember the range and domain of various functions as they are very useful while solving the questions.
Complete step-by-step answer:
In this question, we have to find the principal value of \[{{\sin }^{-1}}\left( -\dfrac{\sqrt{3}}{2} \right)\].
First of all, let us consider the expression given in the question,
\[E={{\sin }^{-1}}\left( -\dfrac{\sqrt{3}}{2} \right)\]
We know that, \[{{\sin }^{-1}}\left( -x \right)=-{{\sin }^{-1}}\left( x \right)\]. By using this in the above expression, we get,
\[E=-{{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)....\left( i \right)\]
Now, let us draw the table for trigonometric ratios of general angles.
Now we know that the range of principal value of \[{{\sin }^{-1}}\left( x \right)\] lies between \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\].
From the table of general trigonometric ratios, we get,
\[\sin \left( \dfrac{\pi }{3} \right)=\dfrac{\sqrt{3}}{2}\]
By taking \[{{\sin }^{-1}}\] on both the sides, we get,
\[{{\sin }^{-1}}\sin \left( \dfrac{\pi }{3} \right)={{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)\]
We know that for \[\dfrac{-\pi }{2}\le x\le \dfrac{\pi }{2},{{\sin }^{-1}}\sin \left( x \right)=x\]. So, we get,
\[\dfrac{\pi }{3}={{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)....\left( ii \right)\]
Now by substituting the value of \[{{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)\] in equation (i), we get,
\[E=\dfrac{-\pi }{3}\]
Hence, we get the principal value of \[{{\sin }^{-1}}\left( -\dfrac{\sqrt{3}}{2} \right)\] as \[\dfrac{-\pi }{3}\].
Note: In this question, first of all, students must take care that the value of the angle must lie in the range of \[{{\sin }^{-1}}x\] which is \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\]. For example, we know that \[\sin \left( \dfrac{2\pi }{3} \right)\] is also equal to \[\dfrac{\sqrt{3}}{2}\] but we never take \[{{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)\] as \[\dfrac{2\pi }{3}\] because \[\dfrac{2\pi }{3}\] does not lie in the range of \[{{\sin }^{-1}}x\]. In the case of inverse trigonometric functions, students should remember the range and domain of various functions as they are very useful while solving the questions.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it