Answer
Verified
435.6k+ views
Hint: We can draw an Ace or a Spade from a well shuffled pack of 52 playing cards, the number of ace cards present are 4 and spade cards are 13. These ace cards belong to each of the four suites including spade and thus we will subtract its probability (of intersection of the two). By applying the formula of probability and using the identity of union, we can calculate the value of required probability.
Formula to be used:
$ P = \dfrac{f}{T} $ where, P is the probability, f , favorable outcomes and T, the total outcomes.
Identity to be used:
$ P\left( {A \cup S} \right) = P(A) + P(S) - P\left( {A \cap S} \right) $
Where, $ \cap , \cup $ sign denotes intersection and union respectively, A and S denotes different events.
Complete step-by-step answer:
In a well shuffled deck of 52 playing cards, the number of spades and aces are:
Spade cards = 13
Ace cards = 4
The respective probabilities are given as:
Spade:
$ P = \dfrac{f}{T} $ , here,
Favorable outcomes (f) = 13
Total outcomes (T) = 52
$ \Rightarrow P\left( S \right) = \dfrac{{13}}{{52}} $
Ace:
$ P = \dfrac{f}{T} $ , here,
Favorable outcomes (f) = 4
Total outcomes (T) = 52
$ \Rightarrow P\left( S \right) = \dfrac{4}{{52}} $
Then, $ P\left( {A \cap S} \right) $ can be given as:
We have only 1 ace card belonging to spade suite, so the favorable outcome is 1
$ \Rightarrow P\left( {A \cap S} \right) = \dfrac{1}{{52}} $
Venn diagram for the probability drawing either spade or ace is:
In the union of probability of both the cards, we don’t require the area of their intersection denoting selection of ace that belongs to spade suite. So to find the required probability, we can use the formula:
$ P\left( {A \cup S} \right) = P(A) + P(S) - P\left( {A \cap S} \right) $
Substituting the values, we get:
\[
P\left( {A \cup S} \right) = \dfrac{4}{{52}} + \dfrac{{13}}{{52}} - \dfrac{1}{{52}} \\
P\left( {A \cup S} \right) = \dfrac{{16}}{{52}} \\
P\left( {A \cup S} \right) = \dfrac{4}{{13}} \;
\]
Therefore, the probability of drawing an Ace or a Spade from a well shuffled pack of 52 playing cards is $ \dfrac{4}{{13}} $
So, the correct answer is “ $ \dfrac{4}{{13}} $ ”.
Note: The question can also be solved by the following method:
We know that ace cards are 4 in number belonging to each suit and spade cards are 13 in number including 1 ace of spade.
So total number of ace and spade cards are:
\[4 + {\text{1}}3 = 17\]
But, we can either draw a spade card or an ace card, so for the favorable outcomes, we need to subtract this 1 from their addition
\[17-1 = 16\]
Applying the formula, we get:
$
P = \dfrac{{16}}{{52}} \\
P = \dfrac{4}{{13}} \;
$
Formula to be used:
$ P = \dfrac{f}{T} $ where, P is the probability, f , favorable outcomes and T, the total outcomes.
Identity to be used:
$ P\left( {A \cup S} \right) = P(A) + P(S) - P\left( {A \cap S} \right) $
Where, $ \cap , \cup $ sign denotes intersection and union respectively, A and S denotes different events.
Complete step-by-step answer:
In a well shuffled deck of 52 playing cards, the number of spades and aces are:
Spade cards = 13
Ace cards = 4
The respective probabilities are given as:
Spade:
$ P = \dfrac{f}{T} $ , here,
Favorable outcomes (f) = 13
Total outcomes (T) = 52
$ \Rightarrow P\left( S \right) = \dfrac{{13}}{{52}} $
Ace:
$ P = \dfrac{f}{T} $ , here,
Favorable outcomes (f) = 4
Total outcomes (T) = 52
$ \Rightarrow P\left( S \right) = \dfrac{4}{{52}} $
Then, $ P\left( {A \cap S} \right) $ can be given as:
We have only 1 ace card belonging to spade suite, so the favorable outcome is 1
$ \Rightarrow P\left( {A \cap S} \right) = \dfrac{1}{{52}} $
Venn diagram for the probability drawing either spade or ace is:
In the union of probability of both the cards, we don’t require the area of their intersection denoting selection of ace that belongs to spade suite. So to find the required probability, we can use the formula:
$ P\left( {A \cup S} \right) = P(A) + P(S) - P\left( {A \cap S} \right) $
Substituting the values, we get:
\[
P\left( {A \cup S} \right) = \dfrac{4}{{52}} + \dfrac{{13}}{{52}} - \dfrac{1}{{52}} \\
P\left( {A \cup S} \right) = \dfrac{{16}}{{52}} \\
P\left( {A \cup S} \right) = \dfrac{4}{{13}} \;
\]
Therefore, the probability of drawing an Ace or a Spade from a well shuffled pack of 52 playing cards is $ \dfrac{4}{{13}} $
So, the correct answer is “ $ \dfrac{4}{{13}} $ ”.
Note: The question can also be solved by the following method:
We know that ace cards are 4 in number belonging to each suit and spade cards are 13 in number including 1 ace of spade.
So total number of ace and spade cards are:
\[4 + {\text{1}}3 = 17\]
But, we can either draw a spade card or an ace card, so for the favorable outcomes, we need to subtract this 1 from their addition
\[17-1 = 16\]
Applying the formula, we get:
$
P = \dfrac{{16}}{{52}} \\
P = \dfrac{4}{{13}} \;
$
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
The states of India which do not have an International class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Name the three parallel ranges of the Himalayas Describe class 9 social science CBSE