
Find the radius of the circle whose circumference is equal to the sum of the circumference of the circles having radius 19 cm and 9 cm.
Answer
533.4k+ views
Hint: Assume a variable r that will represent the radius of the circle whose circumference is equal to the sum of the circumference of the circles having radius 19 cm and 9 cm. For a circle with radius equal to r, the circumference is given by the formula . Using this formula, the question can be solved.
Complete step-by-step answer:
Before proceeding with the question, we must know all the formulas that will be required to solve this question.
Consider a circle having its radius equal to r. To find the circumference of this circle, we use the formula,
C = . . . . . . . . . . . (1)
In the question, we have to find the radius of the circle whose circumference is equal to the sum of the circumference of the circles having radius 19 cm and 9 cm.
Let us assume the radius of this circle as r. Using formula (1), the circumference of this circle is,
C = . . . . . . . . (2)
Using formula (1), the circumference of the circle with radius 19 cm is equal to,
. . . . . . . . (3)
Using formula (1), the circumference of the circle with radius 9 cm is equal to,
. . . . . . . . (4)
In the question, it is given that,
Substituting C from equation (2), from equation (3) and from equation (4) in the above equation, we get,
Hence, the answer is 28 cm.
Note: This question can be done directly if one knows that the circumference is linearly proportional to the radius of the circle. Since the circumference of the first circle is equal to the sum of the circumference of the other two circles, we can say that the radius of the first circle is equal to the sum of the radius of the other two circles.
Complete step-by-step answer:
Before proceeding with the question, we must know all the formulas that will be required to solve this question.
Consider a circle having its radius equal to r. To find the circumference of this circle, we use the formula,
C =
In the question, we have to find the radius of the circle whose circumference is equal to the sum of the circumference of the circles having radius 19 cm and 9 cm.
Let us assume the radius of this circle as r. Using formula (1), the circumference of this circle is,
C =
Using formula (1), the circumference of the circle with radius 19 cm is equal to,
Using formula (1), the circumference of the circle with radius 9 cm is equal to,
In the question, it is given that,
Substituting C from equation (2),
Hence, the answer is 28 cm.
Note: This question can be done directly if one knows that the circumference is linearly proportional to the radius of the circle. Since the circumference of the first circle is equal to the sum of the circumference of the other two circles, we can say that the radius of the first circle is equal to the sum of the radius of the other two circles.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE

How many crores make 10 million class 7 maths CBSE

AIM To prepare stained temporary mount of onion peel class 7 biology CBSE

The southernmost point of the Indian mainland is known class 7 social studies CBSE

Find HCF and LCM of 120 and 144 by using Fundamental class 7 maths CBSE

List of coprime numbers from 1 to 100 class 7 maths CBSE
