
Find the radius of the circle whose circumference is equal to the sum of the circumference of the circles having radius 19 cm and 9 cm.
Answer
619.2k+ views
Hint: Assume a variable r that will represent the radius of the circle whose circumference is equal to the sum of the circumference of the circles having radius 19 cm and 9 cm. For a circle with radius equal to r, the circumference is given by the formula $2\pi r$. Using this formula, the question can be solved.
Complete step-by-step answer:
Before proceeding with the question, we must know all the formulas that will be required to solve this question.
Consider a circle having its radius equal to r. To find the circumference of this circle, we use the formula,
C = $2\pi r$ . . . . . . . . . . . (1)
In the question, we have to find the radius of the circle whose circumference is equal to the sum of the circumference of the circles having radius 19 cm and 9 cm.
Let us assume the radius of this circle as r. Using formula (1), the circumference of this circle is,
C = $2\pi r$ . . . . . . . . (2)
Using formula (1), the circumference of the circle with radius 19 cm is equal to,
${{C}_{1}}=2\pi \left( 19 \right)$ . . . . . . . . (3)
Using formula (1), the circumference of the circle with radius 9 cm is equal to,
${{C}_{2}}=2\pi \left( 9 \right)$ . . . . . . . . (4)
In the question, it is given that,
$C={{C}_{1}}+{{C}_{2}}$
Substituting C from equation (2), ${{C}_{1}}$ from equation (3) and ${{C}_{2}}$ from equation (4) in the above equation, we get,
$\begin{align}
& 2\pi r=2\pi \left( 19 \right)+2\pi \left( 9 \right) \\
& \Rightarrow 2\pi r=2\pi \left( 19+9 \right) \\
& \Rightarrow 2\pi r=2\pi \left( 28 \right) \\
& \Rightarrow r=28cm \\
\end{align}$
Hence, the answer is 28 cm.
Note: This question can be done directly if one knows that the circumference is linearly proportional to the radius of the circle. Since the circumference of the first circle is equal to the sum of the circumference of the other two circles, we can say that the radius of the first circle is equal to the sum of the radius of the other two circles.
Complete step-by-step answer:
Before proceeding with the question, we must know all the formulas that will be required to solve this question.
Consider a circle having its radius equal to r. To find the circumference of this circle, we use the formula,
C = $2\pi r$ . . . . . . . . . . . (1)
In the question, we have to find the radius of the circle whose circumference is equal to the sum of the circumference of the circles having radius 19 cm and 9 cm.
Let us assume the radius of this circle as r. Using formula (1), the circumference of this circle is,
C = $2\pi r$ . . . . . . . . (2)
Using formula (1), the circumference of the circle with radius 19 cm is equal to,
${{C}_{1}}=2\pi \left( 19 \right)$ . . . . . . . . (3)
Using formula (1), the circumference of the circle with radius 9 cm is equal to,
${{C}_{2}}=2\pi \left( 9 \right)$ . . . . . . . . (4)
In the question, it is given that,
$C={{C}_{1}}+{{C}_{2}}$
Substituting C from equation (2), ${{C}_{1}}$ from equation (3) and ${{C}_{2}}$ from equation (4) in the above equation, we get,
$\begin{align}
& 2\pi r=2\pi \left( 19 \right)+2\pi \left( 9 \right) \\
& \Rightarrow 2\pi r=2\pi \left( 19+9 \right) \\
& \Rightarrow 2\pi r=2\pi \left( 28 \right) \\
& \Rightarrow r=28cm \\
\end{align}$
Hence, the answer is 28 cm.
Note: This question can be done directly if one knows that the circumference is linearly proportional to the radius of the circle. Since the circumference of the first circle is equal to the sum of the circumference of the other two circles, we can say that the radius of the first circle is equal to the sum of the radius of the other two circles.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
What are the factors of 100 class 7 maths CBSE

The value of 6 more than 7 is A 1 B 1 C 13 D 13 class 7 maths CBSE

Convert 200 Million dollars in rupees class 7 maths CBSE

AIM To prepare stained temporary mount of onion peel class 7 biology CBSE

Write a letter to the editor of the national daily class 7 english CBSE

List of coprime numbers from 1 to 100 class 7 maths CBSE


