Answer
Verified
496.8k+ views
Hint: In order to solve this problem use the concept that differentiation is the inverse of integration and vice-versa. Using this concept you can get the roots of the equation given.
Complete step-by-step answer:
The given equations are ${\text{f(x) = }}\int\limits_{\text{1}}^{\text{x}} {\sqrt {{\text{2 - }}{{\text{t}}^{\text{2}}}} {\text{dt}}} $ and \[{{\text{x}}^{\text{2}}}{\text{ - f '(x) = 0}}\]
On solving ${\text{f(x) = }}\int\limits_{\text{1}}^{\text{x}} {\sqrt {{\text{2 - }}{{\text{t}}^{\text{2}}}} {\text{dt}}} $ we get f(x) in terms of x as in limit there is x so, t will be replaced by x.
So, f(x) can be written as ${\text{f(x) = }}\int\limits_{\text{1}}^{\text{x}} {\sqrt {{\text{2 - }}{{\text{x}}^{\text{2}}}} {\text{dx}}} $
And we know integration of f ‘(x) is f(x) similarly differentiation of f(x) is f ‘(x).
If ${\text{f(x) = }}\int\limits_{\text{1}}^{\text{x}} {\sqrt {{\text{2 - }}{{\text{x}}^{\text{2}}}} {\text{dx}}} $
So, ${\text{f '(x) = }}\sqrt {{\text{2 - }}{{\text{x}}^{\text{2}}}} $
The other equation is \[{{\text{x}}^{\text{2}}}{\text{ - f '(x) = 0}}\].
On putting the value of ${\text{f '(x) = }}\sqrt {{\text{2 - }}{{\text{x}}^{\text{2}}}} $ in the above equation we get the equation as:
\[{{\text{x}}^{\text{2}}} - \sqrt {2 - {x^2}} = 0\]
\[{{\text{x}}^{\text{2}}}{\text{ = }}\sqrt {{\text{2 - }}{{\text{x}}^{\text{2}}}} \]
On squaring both sides we get,
${{\text{x}}^{\text{4}}}{\text{ + }}{{\text{x}}^{\text{2}}}{\text{ - 2 = 0}}$
${{\text{x}}^{\text{2}}}{\text{ = 1, - 2}}$
So, the real values of ${\text{x} = \pm 1}$
So, the correct option for this question is A.
Note: Whenever you face such types of problems you have to use the concept that integration of f ‘(x) is f(x) similarly differentiation of f(x) is f ‘(x). Here in this question we have then found the roots of the equation obtained then eliminated the imaginary roots as only real roots have been asked in the question. Proceeding like this will take you to the right answer.
Complete step-by-step answer:
The given equations are ${\text{f(x) = }}\int\limits_{\text{1}}^{\text{x}} {\sqrt {{\text{2 - }}{{\text{t}}^{\text{2}}}} {\text{dt}}} $ and \[{{\text{x}}^{\text{2}}}{\text{ - f '(x) = 0}}\]
On solving ${\text{f(x) = }}\int\limits_{\text{1}}^{\text{x}} {\sqrt {{\text{2 - }}{{\text{t}}^{\text{2}}}} {\text{dt}}} $ we get f(x) in terms of x as in limit there is x so, t will be replaced by x.
So, f(x) can be written as ${\text{f(x) = }}\int\limits_{\text{1}}^{\text{x}} {\sqrt {{\text{2 - }}{{\text{x}}^{\text{2}}}} {\text{dx}}} $
And we know integration of f ‘(x) is f(x) similarly differentiation of f(x) is f ‘(x).
If ${\text{f(x) = }}\int\limits_{\text{1}}^{\text{x}} {\sqrt {{\text{2 - }}{{\text{x}}^{\text{2}}}} {\text{dx}}} $
So, ${\text{f '(x) = }}\sqrt {{\text{2 - }}{{\text{x}}^{\text{2}}}} $
The other equation is \[{{\text{x}}^{\text{2}}}{\text{ - f '(x) = 0}}\].
On putting the value of ${\text{f '(x) = }}\sqrt {{\text{2 - }}{{\text{x}}^{\text{2}}}} $ in the above equation we get the equation as:
\[{{\text{x}}^{\text{2}}} - \sqrt {2 - {x^2}} = 0\]
\[{{\text{x}}^{\text{2}}}{\text{ = }}\sqrt {{\text{2 - }}{{\text{x}}^{\text{2}}}} \]
On squaring both sides we get,
${{\text{x}}^{\text{4}}}{\text{ + }}{{\text{x}}^{\text{2}}}{\text{ - 2 = 0}}$
${{\text{x}}^{\text{2}}}{\text{ = 1, - 2}}$
So, the real values of ${\text{x} = \pm 1}$
So, the correct option for this question is A.
Note: Whenever you face such types of problems you have to use the concept that integration of f ‘(x) is f(x) similarly differentiation of f(x) is f ‘(x). Here in this question we have then found the roots of the equation obtained then eliminated the imaginary roots as only real roots have been asked in the question. Proceeding like this will take you to the right answer.
Recently Updated Pages
A particle is undergoing a horizontal circle of radius class 11 physics CBSE
A particle is thrown vertically upwards with a velocity class 11 physics CBSE
A particle is rotated in a vertical circle by connecting class 11 physics CBSE
A particle is projected with a velocity v such that class 11 physics CBSE
A particle is projected with a velocity u making an class 11 physics CBSE
A particle is projected vertically upwards and it reaches class 11 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE