
Find the remainder of \[\dfrac{{{{51}^{49}}}}{1}\].
Answer
621k+ views
Hint: Recall the definition of a remainder and the special properties when a number is divided by 1. We can also proceed with the equation \[n = q.m + r\], to determine the remainder. Don’t be conceived away with the magnitude of the dividend.
Complete step-by-step answer:
Remainder is the integer left over after dividing one integer by another to produce an integral quotient.
Not all integers are exactly divisible by the other. When they are not exactly divisible, they can be written in the form:
\[n = q.m + r..........(1)\]
where n is the dividend, m is the divisor, q is the quotient and r is the remainder.
In the given question, we need to find the remainder when \[{51^{49}}\] is divided by 1.
Hence, \[{51^{49}}\] is the dividend, 1 is the divisor.
We can multiply 1 by \[{51^{49}}\] to obtain \[{51^{49}}\].
Hence, the quotient is \[{51^{49}}\].
Using formula (1), we can find the remainder as follows:
\[{51^{49}} = {1.51^{49}} + r\]
1 multiplied with any number is the number itself, hence, we have:
\[{51^{49}} = {51^{49}} + r\]
We cancel \[{51^{49}}\] on both sides of the equation to obtain:
\[r = 0\]
Hence, the remainder is 0.
Therefore, the correct answer is 0.
Note: You can directly use the special property of 1, that is, when any number is divided by 1, the remainder is zero and the quotient is the number itself. You might make an error in the concept and write the answer as 1, which is wrong.
Complete step-by-step answer:
Remainder is the integer left over after dividing one integer by another to produce an integral quotient.
Not all integers are exactly divisible by the other. When they are not exactly divisible, they can be written in the form:
\[n = q.m + r..........(1)\]
where n is the dividend, m is the divisor, q is the quotient and r is the remainder.
In the given question, we need to find the remainder when \[{51^{49}}\] is divided by 1.
Hence, \[{51^{49}}\] is the dividend, 1 is the divisor.
We can multiply 1 by \[{51^{49}}\] to obtain \[{51^{49}}\].
Hence, the quotient is \[{51^{49}}\].
Using formula (1), we can find the remainder as follows:
\[{51^{49}} = {1.51^{49}} + r\]
1 multiplied with any number is the number itself, hence, we have:
\[{51^{49}} = {51^{49}} + r\]
We cancel \[{51^{49}}\] on both sides of the equation to obtain:
\[r = 0\]
Hence, the remainder is 0.
Therefore, the correct answer is 0.
Note: You can directly use the special property of 1, that is, when any number is divided by 1, the remainder is zero and the quotient is the number itself. You might make an error in the concept and write the answer as 1, which is wrong.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

