
Find the remainder when $7^{21}+7^{22}+7^{23}+7^{24}$ is divided by 25:
$\left(a\right)0$
$\left(b\right)2$
$\left(c\right)4$
$\left(d\right)6$
Answer
509.4k+ views
Hint: We need to find the remainder obtained when we divide the given sum by 25. For this, we will not calculate the actual value of $7^{21}, 7^{22}$ and so on. We would rather see the remainder obtained when we solve the small powers of 7 and see the remainder. And then we will do multiplication in the power to obtain the remainder for the bigger exponent powers of 7.
Complete step by step answer:
Observe that when we divide 7 by 25, we obtain 7 as the remainder.
If we divide $7^2$ by 25 i.e. dividing 49 by 25, we obtain 24 as the remainder.
Next, if we divide $7^3$ by 25 i.e. 343 by 25, we obtain 18 as the remainder.
Further, if we divide $7^4$ by 25 we get 1 as the remainder.
After this, the cycle will continue the same way i.e. $7^5$ divided by 25 will again give 7 and so on.
So, we have the powers $7^{21}$ which when divided by 25 will obtain 7 as the remainder.
Similarly, $7^{22}$ when divided by 25 will obtain 24 as the remainder.
And, $7^{23}$ which when divided by 25 will obtain 18 as the remainder.
Finally, $7^{24}$ which when divided by 25 will obtain 1 as the remainder.
If we sum up these remainders, we get $7+24+18+1=50$ which when divided by 25 gives 0 as the remainder. Hence the remainder obtained when we divide $7^{21}+7^{22}+7^{23}+7^{24}$ by 25 is 0.
So, the correct answer is “Option a”.
Note: We can also write the expression $7^{21}+7^{22}+7^{23}+7^{24}$ as $7^{21}\left(1+7+7^{2}+7^{3}\right)=7^{21}\left(400\right)$. We know that 400 is divisible by 25. So, the remainder obtained will be 0. So from this trick also, we get the same answer.
Complete step by step answer:
Observe that when we divide 7 by 25, we obtain 7 as the remainder.
If we divide $7^2$ by 25 i.e. dividing 49 by 25, we obtain 24 as the remainder.
Next, if we divide $7^3$ by 25 i.e. 343 by 25, we obtain 18 as the remainder.
Further, if we divide $7^4$ by 25 we get 1 as the remainder.
After this, the cycle will continue the same way i.e. $7^5$ divided by 25 will again give 7 and so on.
So, we have the powers $7^{21}$ which when divided by 25 will obtain 7 as the remainder.
Similarly, $7^{22}$ when divided by 25 will obtain 24 as the remainder.
And, $7^{23}$ which when divided by 25 will obtain 18 as the remainder.
Finally, $7^{24}$ which when divided by 25 will obtain 1 as the remainder.
If we sum up these remainders, we get $7+24+18+1=50$ which when divided by 25 gives 0 as the remainder. Hence the remainder obtained when we divide $7^{21}+7^{22}+7^{23}+7^{24}$ by 25 is 0.
So, the correct answer is “Option a”.
Note: We can also write the expression $7^{21}+7^{22}+7^{23}+7^{24}$ as $7^{21}\left(1+7+7^{2}+7^{3}\right)=7^{21}\left(400\right)$. We know that 400 is divisible by 25. So, the remainder obtained will be 0. So from this trick also, we get the same answer.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Who among the following opened first school for girls class 9 social science CBSE

What does the word meridian mean A New day B Midday class 9 social science CBSE

What is the full form of pH?

Write the 6 fundamental rights of India and explain in detail

Which places in India experience sunrise first and class 9 social science CBSE

