Find the remainder when ${\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}}$is divided by $7$.
Answer
Verified
511.2k+ views
Hint: Write 32 as ${2^5}$ and then 2 as (3-1). Solve the expression in power first, using binomial expansion and then proceed.
We know that 32 can be written as ${2^5}$.
So, ${\left( {32} \right)^{32}}$ can be simplified as:
$ \Rightarrow {\left( {32} \right)^{32}} = {\left( {{2^5}} \right)^{32}} = {\left( 2 \right)^{160}} = {\left( {3 - 1} \right)^{160}}$
Now, we will expand ${\left( {3 - 1} \right)^{160}}$ using binomial expansion:
\[
\Rightarrow {\left( {3 - 1} \right)^{160}}{ = ^{160}}{C_0}{\left( 3 \right)^{160}}{ - ^{160}}{C_1}{\left( 3 \right)^{159}} + .....{ - ^{160}}{C_{159}}{\left( 3 \right)^1}{ + ^{160}}{C_{160}}{\left( 3 \right)^0}, \\
\Rightarrow {\left( {3 - 1} \right)^{160}} = 3\left[ {^{160}{C_0}{{\left( 3 \right)}^{159}}{ - ^{160}}{C_1}{{\left( 3 \right)}^{158}} + .....{ - ^{160}}{C_{159}}{{\left( 3 \right)}^0}} \right] + 1, \\
\]
\[ \Rightarrow {\left( {3 - 1} \right)^{160}} = 3k + 1\] where $k \in N$
Now, ${\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}}$ can be simplified as:
\[
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = {\left( {32} \right)^{\left( {3k + 1} \right)}} \\
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = {\left( {{2^5}} \right)^{\left( {3k + 1} \right)}}, \\
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = {2^{\left( {15k + 5} \right)}}, \\
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = {2^{3\left( {5k + 1} \right)}} \times {2^2}, \\
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 4 \times {8^{\left( {5k + 1} \right)}}, \\
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 4{\left( {7 + 1} \right)^{5k + 1}} \\
\]
For \[{\left( {7 + 1} \right)^{5k + 1}}\] we’ll again use binomial expansion:
\[
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 4\left[ {^{5k + 1}{C_0}{7^{5k + 1}}{ + ^{5k + 1}}{C_1}{7^{5k}} + .....{ + ^{5k + 1}}{C_{5k}}{7^1} + 1} \right], \\
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 4\left[ {7n + 1} \right], \\
\]
\[ \Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 28n + 4\] where $n \in N$
We know that $28n$ will always be a multiple of 7. Therefore if we divide \[28n + 4\] by 7, we will get 4 as the remainder.
Therefore when ${\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}}$is divided by 7, the remainder is 4.
Note: Whenever we have to find the remainder when some number (let it be $D$) is divided by another number (let it be $d$), we try to convert $D$ in the form of $d$:
$ \Rightarrow D = dn + k$
So, $k$ comes out as a remainder.
We know that 32 can be written as ${2^5}$.
So, ${\left( {32} \right)^{32}}$ can be simplified as:
$ \Rightarrow {\left( {32} \right)^{32}} = {\left( {{2^5}} \right)^{32}} = {\left( 2 \right)^{160}} = {\left( {3 - 1} \right)^{160}}$
Now, we will expand ${\left( {3 - 1} \right)^{160}}$ using binomial expansion:
\[
\Rightarrow {\left( {3 - 1} \right)^{160}}{ = ^{160}}{C_0}{\left( 3 \right)^{160}}{ - ^{160}}{C_1}{\left( 3 \right)^{159}} + .....{ - ^{160}}{C_{159}}{\left( 3 \right)^1}{ + ^{160}}{C_{160}}{\left( 3 \right)^0}, \\
\Rightarrow {\left( {3 - 1} \right)^{160}} = 3\left[ {^{160}{C_0}{{\left( 3 \right)}^{159}}{ - ^{160}}{C_1}{{\left( 3 \right)}^{158}} + .....{ - ^{160}}{C_{159}}{{\left( 3 \right)}^0}} \right] + 1, \\
\]
\[ \Rightarrow {\left( {3 - 1} \right)^{160}} = 3k + 1\] where $k \in N$
Now, ${\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}}$ can be simplified as:
\[
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = {\left( {32} \right)^{\left( {3k + 1} \right)}} \\
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = {\left( {{2^5}} \right)^{\left( {3k + 1} \right)}}, \\
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = {2^{\left( {15k + 5} \right)}}, \\
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = {2^{3\left( {5k + 1} \right)}} \times {2^2}, \\
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 4 \times {8^{\left( {5k + 1} \right)}}, \\
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 4{\left( {7 + 1} \right)^{5k + 1}} \\
\]
For \[{\left( {7 + 1} \right)^{5k + 1}}\] we’ll again use binomial expansion:
\[
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 4\left[ {^{5k + 1}{C_0}{7^{5k + 1}}{ + ^{5k + 1}}{C_1}{7^{5k}} + .....{ + ^{5k + 1}}{C_{5k}}{7^1} + 1} \right], \\
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 4\left[ {7n + 1} \right], \\
\]
\[ \Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 28n + 4\] where $n \in N$
We know that $28n$ will always be a multiple of 7. Therefore if we divide \[28n + 4\] by 7, we will get 4 as the remainder.
Therefore when ${\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}}$is divided by 7, the remainder is 4.
Note: Whenever we have to find the remainder when some number (let it be $D$) is divided by another number (let it be $d$), we try to convert $D$ in the form of $d$:
$ \Rightarrow D = dn + k$
So, $k$ comes out as a remainder.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE