
Find the roots of the quadratic equation \[{\text{3}}{{\text{x}}^2}{\text{ - 4}}\sqrt 3 {\text{x + 4 = 0}}\]
Answer
593.4k+ views
Hint: We will use formula of Sridhar acharya here. Which is given as, if, a quadratic equation, \[{\text{a}}{{\text{x}}^2}{\text{ + bx + c = 0}}\] then, the roots of the equations would be, \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
Complete step by step answer:
Here, the given equation for us is, \[{\text{3}}{{\text{x}}^2}{\text{ - 4}}\sqrt 3 {\text{x + 4 = 0}}\].
The above equation is in the form of \[{\text{a}}{{\text{x}}^2}{\text{ + bx + c = 0}}\]
$\Rightarrow$ \[a = 3,b = - 4\sqrt 3 ,c = 4\]
So, now if we use the formula of Sridhar acharya, we will get,
\[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
On substituting values of a, b and c, we get,
\[ \Rightarrow x = \dfrac{{ - ( - 4\sqrt 3 ) \pm \sqrt {{{( - 4\sqrt 3 )}^2} - 4.3.4} }}{{2.3}}\]
\[ \Rightarrow x = \dfrac{{4\sqrt 3 \pm \sqrt {16 \times 3 - 48} }}{6}\]
\[ \Rightarrow x = \dfrac{{4\sqrt 3 \pm \sqrt {48 - 48} }}{6}\]
\[ \Rightarrow x = \dfrac{{4\sqrt 3 }}{6}\]
\[ \Rightarrow x = \dfrac{{2\sqrt 3 }}{3}\]
\[ \Rightarrow x = \dfrac{2}{{\sqrt 3 }}\]
So, we have the solution of the equation, \[{\text{3}}{{\text{x}}^2}{\text{ - 4}}\sqrt 3 {\text{x + 4 = 0}}\] as \[x = \dfrac{2}{{\sqrt 3 }}\].
Note: Here in this equation, we get our discriminant, \[\sqrt {{b^2} - 4ac} \]\[ = 0\] which means this quadratic equation will have a equal root. That means the two roots of the equation will be equal and of the same sign. We can also approach this problem in a different way. We can write this equation as \[{(\sqrt 3 x - 2)^2}\]and proceed with the problem to find, \[x = \dfrac{2}{{\sqrt 3 }}\].
Complete step by step answer:
Here, the given equation for us is, \[{\text{3}}{{\text{x}}^2}{\text{ - 4}}\sqrt 3 {\text{x + 4 = 0}}\].
The above equation is in the form of \[{\text{a}}{{\text{x}}^2}{\text{ + bx + c = 0}}\]
$\Rightarrow$ \[a = 3,b = - 4\sqrt 3 ,c = 4\]
So, now if we use the formula of Sridhar acharya, we will get,
\[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
On substituting values of a, b and c, we get,
\[ \Rightarrow x = \dfrac{{ - ( - 4\sqrt 3 ) \pm \sqrt {{{( - 4\sqrt 3 )}^2} - 4.3.4} }}{{2.3}}\]
\[ \Rightarrow x = \dfrac{{4\sqrt 3 \pm \sqrt {16 \times 3 - 48} }}{6}\]
\[ \Rightarrow x = \dfrac{{4\sqrt 3 \pm \sqrt {48 - 48} }}{6}\]
\[ \Rightarrow x = \dfrac{{4\sqrt 3 }}{6}\]
\[ \Rightarrow x = \dfrac{{2\sqrt 3 }}{3}\]
\[ \Rightarrow x = \dfrac{2}{{\sqrt 3 }}\]
So, we have the solution of the equation, \[{\text{3}}{{\text{x}}^2}{\text{ - 4}}\sqrt 3 {\text{x + 4 = 0}}\] as \[x = \dfrac{2}{{\sqrt 3 }}\].
Note: Here in this equation, we get our discriminant, \[\sqrt {{b^2} - 4ac} \]\[ = 0\] which means this quadratic equation will have a equal root. That means the two roots of the equation will be equal and of the same sign. We can also approach this problem in a different way. We can write this equation as \[{(\sqrt 3 x - 2)^2}\]and proceed with the problem to find, \[x = \dfrac{2}{{\sqrt 3 }}\].
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

