How do you find the scalar and vector projections of \[b\] onto \[a\]? Given \[a = i + j + k\], \[b = i - j + k\].
Answer
Verified
441.3k+ views
Hint:In the given question, we have been given two vectors. We have to find the scalar and vector projections of one vector onto the other vector. To do that, we apply the formulae of the projections – scalar projection of \[\overrightarrow x \] on \[\overrightarrow y \] means the magnitude of resolved component of \[\overrightarrow x \] in the direction of \[\overrightarrow y \], while vector projection of \[\overrightarrow x \] on \[\overrightarrow y \] means the resolved component of \[\overrightarrow x \] in the direction of \[\overrightarrow y \].
Formula Used:
Scalar projection of \[\overrightarrow x \] on \[\overrightarrow y \]\[ = \dfrac{{\overrightarrow x .\overrightarrow y }}{{\left| {\overrightarrow y } \right|}}\].
Vector projection of \[\overrightarrow x \] on \[\overrightarrow y \]\[ = \dfrac{{\overrightarrow x .\overrightarrow y }}{{{{\left| {\overrightarrow y } \right|}^2}}}.\overrightarrow y \].
Complete step by step answer:
The given vectors are \[\overrightarrow a = i + j + k\] and \[\overrightarrow b = i - j + k\].
Now, the scalar projection of \[\overrightarrow b \] onto \[\overrightarrow a \]\[ = \dfrac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|}}\]
\[ = \dfrac{{\left( {i + j + k} \right).\left( {i - j + k} \right)}}{{\sqrt {{1^2} + {1^2} + {1^2}} }} = \dfrac{{{1^2} - {1^2} + {1^2}}}{{\sqrt 3 }} = \dfrac{1}{{\sqrt 3 }}\].
Vector projection \[ = \dfrac{{\overrightarrow a .\overrightarrow b }}{{{{\left| {\overrightarrow a } \right|}^2}}}.\overrightarrow a \].
\[ = \dfrac{{\left( {i + j + k} \right).\left( {i - j + k} \right)}}{{\sqrt {{1^2} + {1^2} + {1^2}} }}.\left( {i + j + k} \right) = \dfrac{1}{{\sqrt 3 }}\left( {i + j + k} \right)\].
Note: In the given question, we had to find the scalar and vector projections of one vector onto the other vector. We had been given the values of the vectors. We just simply wrote down the formulae of the two projections, put in the values of the vectors, calculated the result and we got our answer. So, it is really important that we know the formulae and where, when, and how to use them so that we can get the correct result.
Formula Used:
Scalar projection of \[\overrightarrow x \] on \[\overrightarrow y \]\[ = \dfrac{{\overrightarrow x .\overrightarrow y }}{{\left| {\overrightarrow y } \right|}}\].
Vector projection of \[\overrightarrow x \] on \[\overrightarrow y \]\[ = \dfrac{{\overrightarrow x .\overrightarrow y }}{{{{\left| {\overrightarrow y } \right|}^2}}}.\overrightarrow y \].
Complete step by step answer:
The given vectors are \[\overrightarrow a = i + j + k\] and \[\overrightarrow b = i - j + k\].
Now, the scalar projection of \[\overrightarrow b \] onto \[\overrightarrow a \]\[ = \dfrac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|}}\]
\[ = \dfrac{{\left( {i + j + k} \right).\left( {i - j + k} \right)}}{{\sqrt {{1^2} + {1^2} + {1^2}} }} = \dfrac{{{1^2} - {1^2} + {1^2}}}{{\sqrt 3 }} = \dfrac{1}{{\sqrt 3 }}\].
Vector projection \[ = \dfrac{{\overrightarrow a .\overrightarrow b }}{{{{\left| {\overrightarrow a } \right|}^2}}}.\overrightarrow a \].
\[ = \dfrac{{\left( {i + j + k} \right).\left( {i - j + k} \right)}}{{\sqrt {{1^2} + {1^2} + {1^2}} }}.\left( {i + j + k} \right) = \dfrac{1}{{\sqrt 3 }}\left( {i + j + k} \right)\].
Note: In the given question, we had to find the scalar and vector projections of one vector onto the other vector. We had been given the values of the vectors. We just simply wrote down the formulae of the two projections, put in the values of the vectors, calculated the result and we got our answer. So, it is really important that we know the formulae and where, when, and how to use them so that we can get the correct result.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE