Find the shortest distance between lines $ \vec{r}=\hat{i}+2\hat{j}+3\hat{k}+\lambda \left( 2\hat{i}+\hat{j}+4\hat{k} \right) $ and $ \vec{r}=2\hat{i}+4\hat{j}+5\hat{k}+\mu \left( 3\hat{i}+4\hat{j}+5\hat{k} \right) $ .
(a) 2
(b) $ \dfrac{1}{6} $
(c) $ \dfrac{1}{\sqrt{6}} $
(d) $ \sqrt{6} $
Answer
Verified
476.1k+ views
Hint: In order to solve this problem, we need to know the formula for the shortest distance. The formula for shortest distance of lines represented by $ \vec{r}={{\vec{a}}_{1}}+\lambda {{\vec{b}}_{1}} $ and $ \vec{r}={{\vec{a}}_{2}}+\mu {{\vec{b}}_{2}} $ is as follows,
Shortest distance = $ \left| \dfrac{\left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right).\left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right)}{\left| {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right|} \right| $ .We can calculate the denominator by cross-product and solve the numerator by the dot product.
Complete step-by-step answer:
We need to find the shortest distance between two lines.
Let's compare the first equation $ \vec{r}=\hat{i}+2\hat{j}+3\hat{k}+\lambda \left( 2\hat{i}+\hat{j}+4\hat{k} \right) $ to $ \vec{r}={{\vec{a}}_{1}}+\lambda {{\vec{b}}_{1}} $
We get,
$ {{\vec{a}}_{1}}=\hat{i}+2\hat{j}+3\hat{k} $
\[{{\bar{b}}_{1}}=2\hat{i}+\hat{j}+4\hat{k}\]
Now comparing the second equation $ \vec{r}=2\hat{i}+4\hat{j}+5\hat{k}+\mu \left( 3\hat{i}+4\hat{j}+5\hat{k} \right) $ with $ \vec{r}={{\vec{a}}_{2}}+\mu {{\vec{b}}_{2}} $ we get,
\[{{\bar{a}}_{2}}=2\hat{i}+4\hat{j}+5\hat{k}\]
\[{{\bar{b}}_{2}}=3\hat{i}+4\hat{j}+5\hat{k}\]
The formula for shortest distance of lines represented by $ \vec{r}={{\vec{a}}_{1}}+\lambda {{\vec{b}}_{1}} $ and $ \vec{r}={{\vec{a}}_{2}}+\mu {{\vec{b}}_{2}} $ is as follows,
Shortest distance = $ \left| \dfrac{\left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right).\left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right)}{\left| {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right|} \right|..............................(i) $
Now we need to find the value of $ \left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right) $ ,
Substituting the values, we get,
$ \left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right)=\left( 2\hat{i}+4\hat{j}+5\hat{k} \right)-\left( \hat{i}+2\hat{j}+3\hat{k} \right) $
Solving we get,
$ \begin{align}
& \left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right)=\left( 2-1 \right)\hat{i}+\left( 4-2 \right)\hat{j}+\left( 5-3 \right)\hat{k} \\
& =\hat{i}+2\hat{j}+2\hat{k}..................................(ii)
\end{align} $
Now finding the value of $ {{\vec{b}}_{1}}\times {{\vec{b}}_{2}} $ .
We need to find the cross product of the above vectors.
\[{{\bar{b}}_{1}}\times {{\bar{b}}_{2}}=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
2 & 1 & 4 \\
3 & 4 & 5 \\
\end{matrix} \right|\]
Where along the second row we have the components of $ {{\vec{b}}_{1}} $ and along the third row we have the components of $ {{\vec{b}}_{2}} $ .
Solving this we get,
$ \begin{align}
& {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}}=\left( 5-16 \right)\hat{i}-\left( 10-12 \right)\hat{j}+\left( 8-3 \right)\hat{k} \\
& =-11\hat{i}+2\hat{j}+5\hat{k}.................................(iii)
\end{align} $
We also need to find the magnitude of $ {{\vec{b}}_{1}}\times {{\vec{b}}_{2}} $ that is $ \left| {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right| $ .
Therefore, we get,
$ \left| {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right|=\sqrt{{{\left( -11 \right)}^{2}}+{{\left( 2 \right)}^{2}}+{{\left( 5 \right)}^{2}}} $
This is obtained by squaring all the terms, adding them up and taking the square root.
Solving this we get,
$ \begin{align}
& \left| {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right|=\sqrt{121+4+25} \\
& =\sqrt{150}
\end{align} $
Substituting all the values in equation (i), we get,
Shortest distance = $ \left| \dfrac{\left( -11\hat{i}+2\hat{j}+5\hat{k} \right).\left( \hat{i}+2\hat{j}+2\hat{k} \right)}{\sqrt{150}} \right| $
Solving this and taking the dot product in the numerator we get,
Shortest distance = $ \left| \dfrac{\left( -11\hat{i}+2\hat{j}+5\hat{k} \right).\left( \hat{i}+2\hat{j}+2\hat{k} \right)}{\sqrt{150}} \right| $
In dot product, we need to add the multiplication of the $ {{i}^{th}} $ , $ {{j}^{th}} $ and the $ {{k}^{th}} $ component.
Solving this we get,
$ \begin{align}
& \text{Shortest distance}=\left| \dfrac{-11+4+10}{\sqrt{150}} \right| \\
& =\dfrac{3}{\sqrt{150}} \\
& =\dfrac{\sqrt{3}\times \sqrt{3}}{\sqrt{3\times 5\times 2\times 5}} \\
& =\dfrac{\sqrt{3}}{\sqrt{5\times 2\times 5}} \\
& =\dfrac{\sqrt{3}}{5\sqrt{2}} \\
& =\dfrac{\sqrt{3}\times \sqrt{2}}{5\sqrt{2}\times \sqrt{2}} \\
& =\dfrac{\sqrt{6}}{5\times 2} \\
& =\dfrac{\sqrt{6}}{10}
\end{align} $
Hence the shortest distance between two lines is $ \dfrac{\sqrt{6}}{10} $ units.
Note: We need to be careful while performing the cross product there is a negative sign in the $ \hat{j} $ part. We have asked to find the distance therefore, we need to take the modulus of all the scalar terms. Also, while calculating $ \left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right) $ and not $ \left( {{{\vec{a}}}_{1}}-{{{\vec{a}}}_{2}} \right) $ .
Shortest distance = $ \left| \dfrac{\left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right).\left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right)}{\left| {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right|} \right| $ .We can calculate the denominator by cross-product and solve the numerator by the dot product.
Complete step-by-step answer:
We need to find the shortest distance between two lines.
Let's compare the first equation $ \vec{r}=\hat{i}+2\hat{j}+3\hat{k}+\lambda \left( 2\hat{i}+\hat{j}+4\hat{k} \right) $ to $ \vec{r}={{\vec{a}}_{1}}+\lambda {{\vec{b}}_{1}} $
We get,
$ {{\vec{a}}_{1}}=\hat{i}+2\hat{j}+3\hat{k} $
\[{{\bar{b}}_{1}}=2\hat{i}+\hat{j}+4\hat{k}\]
Now comparing the second equation $ \vec{r}=2\hat{i}+4\hat{j}+5\hat{k}+\mu \left( 3\hat{i}+4\hat{j}+5\hat{k} \right) $ with $ \vec{r}={{\vec{a}}_{2}}+\mu {{\vec{b}}_{2}} $ we get,
\[{{\bar{a}}_{2}}=2\hat{i}+4\hat{j}+5\hat{k}\]
\[{{\bar{b}}_{2}}=3\hat{i}+4\hat{j}+5\hat{k}\]
The formula for shortest distance of lines represented by $ \vec{r}={{\vec{a}}_{1}}+\lambda {{\vec{b}}_{1}} $ and $ \vec{r}={{\vec{a}}_{2}}+\mu {{\vec{b}}_{2}} $ is as follows,
Shortest distance = $ \left| \dfrac{\left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right).\left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right)}{\left| {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right|} \right|..............................(i) $
Now we need to find the value of $ \left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right) $ ,
Substituting the values, we get,
$ \left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right)=\left( 2\hat{i}+4\hat{j}+5\hat{k} \right)-\left( \hat{i}+2\hat{j}+3\hat{k} \right) $
Solving we get,
$ \begin{align}
& \left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right)=\left( 2-1 \right)\hat{i}+\left( 4-2 \right)\hat{j}+\left( 5-3 \right)\hat{k} \\
& =\hat{i}+2\hat{j}+2\hat{k}..................................(ii)
\end{align} $
Now finding the value of $ {{\vec{b}}_{1}}\times {{\vec{b}}_{2}} $ .
We need to find the cross product of the above vectors.
\[{{\bar{b}}_{1}}\times {{\bar{b}}_{2}}=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
2 & 1 & 4 \\
3 & 4 & 5 \\
\end{matrix} \right|\]
Where along the second row we have the components of $ {{\vec{b}}_{1}} $ and along the third row we have the components of $ {{\vec{b}}_{2}} $ .
Solving this we get,
$ \begin{align}
& {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}}=\left( 5-16 \right)\hat{i}-\left( 10-12 \right)\hat{j}+\left( 8-3 \right)\hat{k} \\
& =-11\hat{i}+2\hat{j}+5\hat{k}.................................(iii)
\end{align} $
We also need to find the magnitude of $ {{\vec{b}}_{1}}\times {{\vec{b}}_{2}} $ that is $ \left| {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right| $ .
Therefore, we get,
$ \left| {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right|=\sqrt{{{\left( -11 \right)}^{2}}+{{\left( 2 \right)}^{2}}+{{\left( 5 \right)}^{2}}} $
This is obtained by squaring all the terms, adding them up and taking the square root.
Solving this we get,
$ \begin{align}
& \left| {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right|=\sqrt{121+4+25} \\
& =\sqrt{150}
\end{align} $
Substituting all the values in equation (i), we get,
Shortest distance = $ \left| \dfrac{\left( -11\hat{i}+2\hat{j}+5\hat{k} \right).\left( \hat{i}+2\hat{j}+2\hat{k} \right)}{\sqrt{150}} \right| $
Solving this and taking the dot product in the numerator we get,
Shortest distance = $ \left| \dfrac{\left( -11\hat{i}+2\hat{j}+5\hat{k} \right).\left( \hat{i}+2\hat{j}+2\hat{k} \right)}{\sqrt{150}} \right| $
In dot product, we need to add the multiplication of the $ {{i}^{th}} $ , $ {{j}^{th}} $ and the $ {{k}^{th}} $ component.
Solving this we get,
$ \begin{align}
& \text{Shortest distance}=\left| \dfrac{-11+4+10}{\sqrt{150}} \right| \\
& =\dfrac{3}{\sqrt{150}} \\
& =\dfrac{\sqrt{3}\times \sqrt{3}}{\sqrt{3\times 5\times 2\times 5}} \\
& =\dfrac{\sqrt{3}}{\sqrt{5\times 2\times 5}} \\
& =\dfrac{\sqrt{3}}{5\sqrt{2}} \\
& =\dfrac{\sqrt{3}\times \sqrt{2}}{5\sqrt{2}\times \sqrt{2}} \\
& =\dfrac{\sqrt{6}}{5\times 2} \\
& =\dfrac{\sqrt{6}}{10}
\end{align} $
Hence the shortest distance between two lines is $ \dfrac{\sqrt{6}}{10} $ units.
Note: We need to be careful while performing the cross product there is a negative sign in the $ \hat{j} $ part. We have asked to find the distance therefore, we need to take the modulus of all the scalar terms. Also, while calculating $ \left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right) $ and not $ \left( {{{\vec{a}}}_{1}}-{{{\vec{a}}}_{2}} \right) $ .
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Economics: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
What is a transformer Explain the principle construction class 12 physics CBSE
Explain sex determination in humans with the help of class 12 biology CBSE