How do you find the six trigonometric functions of 390 degrees?
Answer
Verified
448.8k+ views
Hint: Assume the given angle as \[\theta \] and convert it from degrees to radian using the relation: - 180 degrees = \[\pi \] radian. Now, use the relation: - \[\cos \left( 2\pi +\theta \right)=\cos \theta \] to find the value of \[\cos \left( {{390}^{\circ }} \right)\]. Similarly, use the formula: - \[\sin \left( 2\pi +\theta \right)=\sin \theta \] to find the value of \[\sin \left( {{390}^{\circ }} \right)\]. Further, to find the value of \[\tan \theta \], use the relation: - \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }\]. Finally, find the remaining three trigonometric ratios given as: - \[\sec \theta =\dfrac{1}{\cos \theta },\csc \theta =\dfrac{1}{\sin \theta }\] and \[\cot \theta =\dfrac{1}{\tan \theta }\].
Complete step by step answer:
Here, we have been provided with angle 390 degrees and we are asked to find all the six trigonometric functions of this angle. But first let us convert the given angle in degrees into angle in radian.
Now, we know that 180 degrees = \[\pi \] radian, so using the unitary method, we have,
\[\Rightarrow {{1}^{\circ }}=\dfrac{\pi }{180}\] radian
\[\Rightarrow {{390}^{\circ }}=\dfrac{390\pi }{180}\] radian
\[\Rightarrow {{390}^{\circ }}=\dfrac{13\pi }{6}\] radian
This can be written as: -
\[\Rightarrow \dfrac{13\pi }{6}=\left( 2\pi +\dfrac{\pi }{6} \right)\]
Now, let us find the value of cosine of the given angle first, so we have,
\[\Rightarrow \cos \left( {{390}^{\circ }} \right)=\cos \left( 2\pi +\dfrac{\pi }{6} \right)\]
Using the formula: - \[\cos \left( 2\pi +\theta \right)=\cos \theta \], where \[\theta =\dfrac{\pi }{6}\], we get,
\[\begin{align}
& \Rightarrow \cos \left( {{390}^{\circ }} \right)=\cos \left( 2\pi +\dfrac{\pi }{6} \right)=\cos \left( \dfrac{\pi }{6} \right) \\
& \Rightarrow \cos \left( {{390}^{\circ }} \right)=\dfrac{\sqrt{3}}{2} \\
\end{align}\]
Now, let us find the value of sine of the provided angle, so we have,
\[\Rightarrow \sin \left( {{390}^{\circ }} \right)=\sin \left( 2\pi +\dfrac{\pi }{6} \right)\]
Using the formula: - \[\sin \left( 2\pi +\theta \right)=\sin \theta \], we get,
\[\begin{align}
& \Rightarrow \sin \left( {{390}^{\circ }} \right)=\sin \left( \dfrac{\pi }{6} \right) \\
& \Rightarrow \sin \left( {{390}^{\circ }} \right)=\dfrac{1}{2} \\
\end{align}\]
We know that \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }\], so we have,
\[\begin{align}
& \Rightarrow \tan \left( {{390}^{\circ }} \right)=\dfrac{\sin \left( {{390}^{\circ }} \right)}{\cos \left( {{390}^{\circ }} \right)} \\
& \Rightarrow \tan \left( {{390}^{\circ }} \right)=\dfrac{\dfrac{1}{2}}{\dfrac{\sqrt{3}}{2}} \\
& \Rightarrow \tan \left( {{390}^{\circ }} \right)=\dfrac{1}{\sqrt{3}} \\
\end{align}\]
Now, we know that \[\sec \theta =\dfrac{1}{\cos \theta },\csc \theta =\dfrac{1}{\sin \theta }\] and \[\cot \theta =\dfrac{1}{\tan \theta }\], so using these relations we get,
\[\begin{align}
& \Rightarrow \sec \left( {{390}^{\circ }} \right)=\dfrac{1}{\cos \left( {{390}^{\circ }} \right)} \\
& \Rightarrow \sec \left( {{390}^{\circ }} \right)=\dfrac{1}{\dfrac{\sqrt{3}}{2}} \\
& \Rightarrow \sec \left( {{390}^{\circ }} \right)=\dfrac{2}{\sqrt{3}} \\
\end{align}\]
Moving ahead we have,
\[\begin{align}
& \Rightarrow \csc \left( {{390}^{\circ }} \right)=\dfrac{1}{\sin \left( {{390}^{\circ }} \right)} \\
& \Rightarrow \csc \left( {{390}^{\circ }} \right)=\dfrac{1}{\dfrac{1}{2}} \\
& \Rightarrow \csc \left( {{390}^{\circ }} \right)=2 \\
\end{align}\]
At last we have,
\[\begin{align}
& \Rightarrow \cot \theta =\dfrac{1}{\tan \theta } \\
& \Rightarrow \cot \left( {{390}^{\circ }} \right)=\dfrac{1}{\tan \left( {{390}^{\circ }} \right)} \\
& \Rightarrow \cot \left( {{390}^{\circ }} \right)=\dfrac{1}{\dfrac{1}{\sqrt{3}}} \\
& \Rightarrow \cot \left( {{390}^{\circ }} \right)=\sqrt{3} \\
\end{align}\]
Hence, the value of all the six trigonometric functions can be given as: -
\[\begin{align}
& \Rightarrow \cos \left( {{390}^{\circ }} \right)=\dfrac{\sqrt{3}}{2} \\
& \Rightarrow \sin \left( {{390}^{\circ }} \right)=\dfrac{1}{2} \\
& \Rightarrow \tan \left( {{390}^{\circ }} \right)=\dfrac{2}{\sqrt{3}} \\
& \Rightarrow \sec \left( {{390}^{\circ }} \right)=\dfrac{2}{\sqrt{3}} \\
& \Rightarrow \csc \left( {{390}^{\circ }} \right)=2 \\
& \Rightarrow \cot \left( {{390}^{\circ }} \right)=\sqrt{3} \\
\end{align}\]
Note:
One may note that the angle \[\left( 2\pi +\dfrac{\pi }{6} \right)\], i.e., 390 degrees lies in the first quadrant and this is the reason that we have obtained positive values of all the six trigonometric ratios. You must remember the signs of all the trigonometric functions in all the four quadrants to solve the question otherwise you will get confused. Remember the basic formulas of expressions like: - \[\sin \left( a\pi +\theta \right)\], \[\cos \left( a\pi +\theta \right)\], \[\tan \left( a\pi +\theta \right)\] for certain integer values of ‘a’.
Complete step by step answer:
Here, we have been provided with angle 390 degrees and we are asked to find all the six trigonometric functions of this angle. But first let us convert the given angle in degrees into angle in radian.
Now, we know that 180 degrees = \[\pi \] radian, so using the unitary method, we have,
\[\Rightarrow {{1}^{\circ }}=\dfrac{\pi }{180}\] radian
\[\Rightarrow {{390}^{\circ }}=\dfrac{390\pi }{180}\] radian
\[\Rightarrow {{390}^{\circ }}=\dfrac{13\pi }{6}\] radian
This can be written as: -
\[\Rightarrow \dfrac{13\pi }{6}=\left( 2\pi +\dfrac{\pi }{6} \right)\]
Now, let us find the value of cosine of the given angle first, so we have,
\[\Rightarrow \cos \left( {{390}^{\circ }} \right)=\cos \left( 2\pi +\dfrac{\pi }{6} \right)\]
Using the formula: - \[\cos \left( 2\pi +\theta \right)=\cos \theta \], where \[\theta =\dfrac{\pi }{6}\], we get,
\[\begin{align}
& \Rightarrow \cos \left( {{390}^{\circ }} \right)=\cos \left( 2\pi +\dfrac{\pi }{6} \right)=\cos \left( \dfrac{\pi }{6} \right) \\
& \Rightarrow \cos \left( {{390}^{\circ }} \right)=\dfrac{\sqrt{3}}{2} \\
\end{align}\]
Now, let us find the value of sine of the provided angle, so we have,
\[\Rightarrow \sin \left( {{390}^{\circ }} \right)=\sin \left( 2\pi +\dfrac{\pi }{6} \right)\]
Using the formula: - \[\sin \left( 2\pi +\theta \right)=\sin \theta \], we get,
\[\begin{align}
& \Rightarrow \sin \left( {{390}^{\circ }} \right)=\sin \left( \dfrac{\pi }{6} \right) \\
& \Rightarrow \sin \left( {{390}^{\circ }} \right)=\dfrac{1}{2} \\
\end{align}\]
We know that \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }\], so we have,
\[\begin{align}
& \Rightarrow \tan \left( {{390}^{\circ }} \right)=\dfrac{\sin \left( {{390}^{\circ }} \right)}{\cos \left( {{390}^{\circ }} \right)} \\
& \Rightarrow \tan \left( {{390}^{\circ }} \right)=\dfrac{\dfrac{1}{2}}{\dfrac{\sqrt{3}}{2}} \\
& \Rightarrow \tan \left( {{390}^{\circ }} \right)=\dfrac{1}{\sqrt{3}} \\
\end{align}\]
Now, we know that \[\sec \theta =\dfrac{1}{\cos \theta },\csc \theta =\dfrac{1}{\sin \theta }\] and \[\cot \theta =\dfrac{1}{\tan \theta }\], so using these relations we get,
\[\begin{align}
& \Rightarrow \sec \left( {{390}^{\circ }} \right)=\dfrac{1}{\cos \left( {{390}^{\circ }} \right)} \\
& \Rightarrow \sec \left( {{390}^{\circ }} \right)=\dfrac{1}{\dfrac{\sqrt{3}}{2}} \\
& \Rightarrow \sec \left( {{390}^{\circ }} \right)=\dfrac{2}{\sqrt{3}} \\
\end{align}\]
Moving ahead we have,
\[\begin{align}
& \Rightarrow \csc \left( {{390}^{\circ }} \right)=\dfrac{1}{\sin \left( {{390}^{\circ }} \right)} \\
& \Rightarrow \csc \left( {{390}^{\circ }} \right)=\dfrac{1}{\dfrac{1}{2}} \\
& \Rightarrow \csc \left( {{390}^{\circ }} \right)=2 \\
\end{align}\]
At last we have,
\[\begin{align}
& \Rightarrow \cot \theta =\dfrac{1}{\tan \theta } \\
& \Rightarrow \cot \left( {{390}^{\circ }} \right)=\dfrac{1}{\tan \left( {{390}^{\circ }} \right)} \\
& \Rightarrow \cot \left( {{390}^{\circ }} \right)=\dfrac{1}{\dfrac{1}{\sqrt{3}}} \\
& \Rightarrow \cot \left( {{390}^{\circ }} \right)=\sqrt{3} \\
\end{align}\]
Hence, the value of all the six trigonometric functions can be given as: -
\[\begin{align}
& \Rightarrow \cos \left( {{390}^{\circ }} \right)=\dfrac{\sqrt{3}}{2} \\
& \Rightarrow \sin \left( {{390}^{\circ }} \right)=\dfrac{1}{2} \\
& \Rightarrow \tan \left( {{390}^{\circ }} \right)=\dfrac{2}{\sqrt{3}} \\
& \Rightarrow \sec \left( {{390}^{\circ }} \right)=\dfrac{2}{\sqrt{3}} \\
& \Rightarrow \csc \left( {{390}^{\circ }} \right)=2 \\
& \Rightarrow \cot \left( {{390}^{\circ }} \right)=\sqrt{3} \\
\end{align}\]
Note:
One may note that the angle \[\left( 2\pi +\dfrac{\pi }{6} \right)\], i.e., 390 degrees lies in the first quadrant and this is the reason that we have obtained positive values of all the six trigonometric ratios. You must remember the signs of all the trigonometric functions in all the four quadrants to solve the question otherwise you will get confused. Remember the basic formulas of expressions like: - \[\sin \left( a\pi +\theta \right)\], \[\cos \left( a\pi +\theta \right)\], \[\tan \left( a\pi +\theta \right)\] for certain integer values of ‘a’.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Trending doubts
10 examples of friction in our daily life
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
The combining capacity of an element is known as i class 11 chemistry CBSE