Find the slope and intercept of $3x - 2y = 9$?
Answer
Verified
442.8k+ views
Hint:We know the equation of a line passing through a point and having a slope ‘m’ and with ‘y’ intercept as ‘c’ is given by $y = mx + c$. Here, (x, y) is a variable. We convert the given equation to the slope intercept form. Then comparing the simplified equation with the equation of slope intercept we will get the desired result.
Complete step by step solution:
In the given problem, we are required to find the slope and intercept of the line whose equation is given to us as $3x - 2y = 9$.
The slope intercept form of the equation of a line is $y = mx + c$ where slope of line is given by ‘m’ and y-intercept is given by ‘c’.
So, $3x - 2y = 9$
Shifting term consisting y to right side of the equation,
$ \Rightarrow 3x = 9 + 2y$
$ \Rightarrow 2y = 3x - 9$
Isolating y so as to convert the equation of line to slope and intercept form, we get,
$ \Rightarrow y = \left( {\dfrac{{3x - 9}}{2}} \right)$
Now, we can directly start comparing the equation of the given line with the slope and intercept form of a line and get the values of slope and intercept of the line.
Therefore, On comparing the equation of the line given to us and the slope intercept form of the line, we get,
Slope of the line$ = m = \dfrac{3}{2}$ and y-intercept$ = c = \dfrac{{ - 9}}{2}$.
Note: ‘y’ intercept is defined as a line or a curve crosses the y-axis of a graph. In other words the value of ‘y’ at ‘x’ is equal to zero. Hence, the y intercept of a line can also be found by putting the value of x as zero.
Complete step by step solution:
In the given problem, we are required to find the slope and intercept of the line whose equation is given to us as $3x - 2y = 9$.
The slope intercept form of the equation of a line is $y = mx + c$ where slope of line is given by ‘m’ and y-intercept is given by ‘c’.
So, $3x - 2y = 9$
Shifting term consisting y to right side of the equation,
$ \Rightarrow 3x = 9 + 2y$
$ \Rightarrow 2y = 3x - 9$
Isolating y so as to convert the equation of line to slope and intercept form, we get,
$ \Rightarrow y = \left( {\dfrac{{3x - 9}}{2}} \right)$
Now, we can directly start comparing the equation of the given line with the slope and intercept form of a line and get the values of slope and intercept of the line.
Therefore, On comparing the equation of the line given to us and the slope intercept form of the line, we get,
Slope of the line$ = m = \dfrac{3}{2}$ and y-intercept$ = c = \dfrac{{ - 9}}{2}$.
Note: ‘y’ intercept is defined as a line or a curve crosses the y-axis of a graph. In other words the value of ‘y’ at ‘x’ is equal to zero. Hence, the y intercept of a line can also be found by putting the value of x as zero.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE