Answer
Verified
418.8k+ views
Hint: In this question, we have to make a given equation in the form of slope intercept form of a line. It can be done by first subtracting $3x$ from both sides of the given equation. Then, multiplying each term in $ - y = 5 - 3x$ by $ - 1$. Then compare the final equation with the standard slope intercept form of a line and find the slope $m$ and an intercept $c$ on $y$-axis for this equation.
Formula used:
The Slope Intercept Form of a Line:
The equation of a line with slope $m$ and making an intercept $c$ on $y$-axis is $y = mx + c$.
Complete step by step solution:
We know that the slope intercept form of a line is the equation of a line with slope $m$ and making an intercept $c$ on $y$-axis is $y = mx + c$.
Given equation is $3x - y = 5$
So, we have to make a given equation in the form of $y = mx + c$, the equation of a line with slope $m$ and making an intercept $c$ on $y$-axis.
Subtract $3x$ from both sides of the given equation.
$ \Rightarrow - y = 5 - 3x$
Multiply each term in $ - y = 5 - 3x$ by $ - 1$.
$ \Rightarrow \left( { - y} \right) \times \left( { - 1} \right) = 5 \times \left( { - 1} \right) - 3x \times \left( { - 1} \right)$
Multiply $ - y$ by $ - 1$.
\[ \Rightarrow y = 5\left( { - 1} \right) - 3x\left( { - 1} \right)\]
Multiply $5$ by $ - 1$.
$ \Rightarrow y = - 5 - 3x\left( { - 1} \right)$
Multiply $ - 3x$ by $ - 1$.
$ \Rightarrow y = - 5 + 3x$
Reorder $ - 5$ and $3x$.
$ \Rightarrow y = 3x - 5$
Now, compare this equation with the standard slope intercept form of a line and find the slope $m$ and an intercept $c$ on $y$-axis for this equation.
Here, $m = 3$ and $c = - 5$.
Therefore, the slope of the given line is $3$ and $y$-intercept is $ - 5$.
Note: Slope and $y$-intercept of a line can also be determined by graphing the given equation.
Graph of $3x - y = 5$:
Since, the line $3x - y = 5$ cuts the $y$-axis at $ - 5$.
So, $y$-intercept of a given line is $ - 5$.
We can find the slope of given line by putting $\left( {{x_1},{y_1}} \right) = \left( {2,0} \right)$ and $\left( {{x_2},{y_2}} \right) = \left( {0, - 5} \right)$ in $ \Rightarrow m = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}$.
So, slope is
$ \Rightarrow m = \dfrac{{ - 5 - 0}}{{0 - \dfrac{5}{3}}}$
On simplification, we get
$ \Rightarrow m = 5 \times \dfrac{3}{5}$
$ \Rightarrow 3$
So, the slope of the given line is $3$.
Therefore, the slope of the given line is $3$ and $y$-intercept is $ - 5$.
Formula used:
The Slope Intercept Form of a Line:
The equation of a line with slope $m$ and making an intercept $c$ on $y$-axis is $y = mx + c$.
Complete step by step solution:
We know that the slope intercept form of a line is the equation of a line with slope $m$ and making an intercept $c$ on $y$-axis is $y = mx + c$.
Given equation is $3x - y = 5$
So, we have to make a given equation in the form of $y = mx + c$, the equation of a line with slope $m$ and making an intercept $c$ on $y$-axis.
Subtract $3x$ from both sides of the given equation.
$ \Rightarrow - y = 5 - 3x$
Multiply each term in $ - y = 5 - 3x$ by $ - 1$.
$ \Rightarrow \left( { - y} \right) \times \left( { - 1} \right) = 5 \times \left( { - 1} \right) - 3x \times \left( { - 1} \right)$
Multiply $ - y$ by $ - 1$.
\[ \Rightarrow y = 5\left( { - 1} \right) - 3x\left( { - 1} \right)\]
Multiply $5$ by $ - 1$.
$ \Rightarrow y = - 5 - 3x\left( { - 1} \right)$
Multiply $ - 3x$ by $ - 1$.
$ \Rightarrow y = - 5 + 3x$
Reorder $ - 5$ and $3x$.
$ \Rightarrow y = 3x - 5$
Now, compare this equation with the standard slope intercept form of a line and find the slope $m$ and an intercept $c$ on $y$-axis for this equation.
Here, $m = 3$ and $c = - 5$.
Therefore, the slope of the given line is $3$ and $y$-intercept is $ - 5$.
Note: Slope and $y$-intercept of a line can also be determined by graphing the given equation.
Graph of $3x - y = 5$:
Since, the line $3x - y = 5$ cuts the $y$-axis at $ - 5$.
So, $y$-intercept of a given line is $ - 5$.
We can find the slope of given line by putting $\left( {{x_1},{y_1}} \right) = \left( {2,0} \right)$ and $\left( {{x_2},{y_2}} \right) = \left( {0, - 5} \right)$ in $ \Rightarrow m = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}$.
So, slope is
$ \Rightarrow m = \dfrac{{ - 5 - 0}}{{0 - \dfrac{5}{3}}}$
On simplification, we get
$ \Rightarrow m = 5 \times \dfrac{3}{5}$
$ \Rightarrow 3$
So, the slope of the given line is $3$.
Therefore, the slope of the given line is $3$ and $y$-intercept is $ - 5$.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
The states of India which do not have an International class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Name the three parallel ranges of the Himalayas Describe class 9 social science CBSE