How do you find the slope and intercept of $3x - y = 5$?
Answer
Verified
445.2k+ views
Hint: In this question, we have to make a given equation in the form of slope intercept form of a line. It can be done by first subtracting $3x$ from both sides of the given equation. Then, multiplying each term in $ - y = 5 - 3x$ by $ - 1$. Then compare the final equation with the standard slope intercept form of a line and find the slope $m$ and an intercept $c$ on $y$-axis for this equation.
Formula used:
The Slope Intercept Form of a Line:
The equation of a line with slope $m$ and making an intercept $c$ on $y$-axis is $y = mx + c$.
Complete step by step solution:
We know that the slope intercept form of a line is the equation of a line with slope $m$ and making an intercept $c$ on $y$-axis is $y = mx + c$.
Given equation is $3x - y = 5$
So, we have to make a given equation in the form of $y = mx + c$, the equation of a line with slope $m$ and making an intercept $c$ on $y$-axis.
Subtract $3x$ from both sides of the given equation.
$ \Rightarrow - y = 5 - 3x$
Multiply each term in $ - y = 5 - 3x$ by $ - 1$.
$ \Rightarrow \left( { - y} \right) \times \left( { - 1} \right) = 5 \times \left( { - 1} \right) - 3x \times \left( { - 1} \right)$
Multiply $ - y$ by $ - 1$.
\[ \Rightarrow y = 5\left( { - 1} \right) - 3x\left( { - 1} \right)\]
Multiply $5$ by $ - 1$.
$ \Rightarrow y = - 5 - 3x\left( { - 1} \right)$
Multiply $ - 3x$ by $ - 1$.
$ \Rightarrow y = - 5 + 3x$
Reorder $ - 5$ and $3x$.
$ \Rightarrow y = 3x - 5$
Now, compare this equation with the standard slope intercept form of a line and find the slope $m$ and an intercept $c$ on $y$-axis for this equation.
Here, $m = 3$ and $c = - 5$.
Therefore, the slope of the given line is $3$ and $y$-intercept is $ - 5$.
Note: Slope and $y$-intercept of a line can also be determined by graphing the given equation.
Graph of $3x - y = 5$:
Since, the line $3x - y = 5$ cuts the $y$-axis at $ - 5$.
So, $y$-intercept of a given line is $ - 5$.
We can find the slope of given line by putting $\left( {{x_1},{y_1}} \right) = \left( {2,0} \right)$ and $\left( {{x_2},{y_2}} \right) = \left( {0, - 5} \right)$ in $ \Rightarrow m = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}$.
So, slope is
$ \Rightarrow m = \dfrac{{ - 5 - 0}}{{0 - \dfrac{5}{3}}}$
On simplification, we get
$ \Rightarrow m = 5 \times \dfrac{3}{5}$
$ \Rightarrow 3$
So, the slope of the given line is $3$.
Therefore, the slope of the given line is $3$ and $y$-intercept is $ - 5$.
Formula used:
The Slope Intercept Form of a Line:
The equation of a line with slope $m$ and making an intercept $c$ on $y$-axis is $y = mx + c$.
Complete step by step solution:
We know that the slope intercept form of a line is the equation of a line with slope $m$ and making an intercept $c$ on $y$-axis is $y = mx + c$.
Given equation is $3x - y = 5$
So, we have to make a given equation in the form of $y = mx + c$, the equation of a line with slope $m$ and making an intercept $c$ on $y$-axis.
Subtract $3x$ from both sides of the given equation.
$ \Rightarrow - y = 5 - 3x$
Multiply each term in $ - y = 5 - 3x$ by $ - 1$.
$ \Rightarrow \left( { - y} \right) \times \left( { - 1} \right) = 5 \times \left( { - 1} \right) - 3x \times \left( { - 1} \right)$
Multiply $ - y$ by $ - 1$.
\[ \Rightarrow y = 5\left( { - 1} \right) - 3x\left( { - 1} \right)\]
Multiply $5$ by $ - 1$.
$ \Rightarrow y = - 5 - 3x\left( { - 1} \right)$
Multiply $ - 3x$ by $ - 1$.
$ \Rightarrow y = - 5 + 3x$
Reorder $ - 5$ and $3x$.
$ \Rightarrow y = 3x - 5$
Now, compare this equation with the standard slope intercept form of a line and find the slope $m$ and an intercept $c$ on $y$-axis for this equation.
Here, $m = 3$ and $c = - 5$.
Therefore, the slope of the given line is $3$ and $y$-intercept is $ - 5$.
Note: Slope and $y$-intercept of a line can also be determined by graphing the given equation.
Graph of $3x - y = 5$:
Since, the line $3x - y = 5$ cuts the $y$-axis at $ - 5$.
So, $y$-intercept of a given line is $ - 5$.
We can find the slope of given line by putting $\left( {{x_1},{y_1}} \right) = \left( {2,0} \right)$ and $\left( {{x_2},{y_2}} \right) = \left( {0, - 5} \right)$ in $ \Rightarrow m = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}$.
So, slope is
$ \Rightarrow m = \dfrac{{ - 5 - 0}}{{0 - \dfrac{5}{3}}}$
On simplification, we get
$ \Rightarrow m = 5 \times \dfrac{3}{5}$
$ \Rightarrow 3$
So, the slope of the given line is $3$.
Therefore, the slope of the given line is $3$ and $y$-intercept is $ - 5$.
Recently Updated Pages
Can anyone list 10 advantages and disadvantages of friction
What are the Components of Financial System?
How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE
Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE
What are the possible quantum number for the last outermost class 11 chemistry CBSE
Is C2 paramagnetic or diamagnetic class 11 chemistry CBSE
Trending doubts
Which is not a source of freshwater 1 Glaciers and class 11 chemistry CBSE
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
What is the specific heat capacity of ice water and class 11 physics CBSE