Answer
Verified
429.9k+ views
Hint: Here we are given to find the square root of the negative number which means that we need to find that number which on multiplied with itself will give us the result as $ - 59$.
Now there cannot be any real number that will give us the resultant as $ - 59$ and therefore we can say that this will be an imaginary number. So we can write $ - 59$ as $\left( {59} \right)\left( {{i^2}} \right)$ and here $i$ represents iota and its value is $\sqrt { - 1} $.
Complete step by step solution:
Here we are given to find the square root of $ - 59$ and we know that all real numbers have the square as the positive numbers but here we are given the negative number as the square of the number. Hence we come to know that this cannot be a real number but it will be an imaginary number. In the imaginary number we must know that $i$ represents iota and its value is $\sqrt { - 1} $.
So we can say that $i = \sqrt { - 1} $
Hence we can square both the sides and get:
${i^2} = - 1$
Hence we can write $ - 59$ as $\left( {59} \right)\left( {{i^2}} \right)$
Now writing this in the square root form, we will get:
$\sqrt {\left( {59} \right)\left( {{i^2}} \right)} $
Now we know that when we find the square root of any number we need to write the number in the form of factors and then write the number out of the root whose pair we have in the root.
Hence we can say:
$\sqrt {\left( {59} \right)\left( {{i^2}} \right)} = \sqrt {\left( {59} \right)\left( i \right)\left( i \right)} $
As we can see that iota is in pairs so we can take it outside.
$\sqrt {\left( {59} \right)\left( {{i^2}} \right)} = \sqrt {\left( {59} \right)\left( i \right)\left( i \right)} = i\sqrt {\left( {59} \right)} $
Hence we get the result as $i\sqrt {\left( {59} \right)} $
Note:
Here the student must know that whenever we are given to find the square root of any negative number, then we will always get the imaginary number as our answer because no real number can have the square as negative.
Now there cannot be any real number that will give us the resultant as $ - 59$ and therefore we can say that this will be an imaginary number. So we can write $ - 59$ as $\left( {59} \right)\left( {{i^2}} \right)$ and here $i$ represents iota and its value is $\sqrt { - 1} $.
Complete step by step solution:
Here we are given to find the square root of $ - 59$ and we know that all real numbers have the square as the positive numbers but here we are given the negative number as the square of the number. Hence we come to know that this cannot be a real number but it will be an imaginary number. In the imaginary number we must know that $i$ represents iota and its value is $\sqrt { - 1} $.
So we can say that $i = \sqrt { - 1} $
Hence we can square both the sides and get:
${i^2} = - 1$
Hence we can write $ - 59$ as $\left( {59} \right)\left( {{i^2}} \right)$
Now writing this in the square root form, we will get:
$\sqrt {\left( {59} \right)\left( {{i^2}} \right)} $
Now we know that when we find the square root of any number we need to write the number in the form of factors and then write the number out of the root whose pair we have in the root.
Hence we can say:
$\sqrt {\left( {59} \right)\left( {{i^2}} \right)} = \sqrt {\left( {59} \right)\left( i \right)\left( i \right)} $
As we can see that iota is in pairs so we can take it outside.
$\sqrt {\left( {59} \right)\left( {{i^2}} \right)} = \sqrt {\left( {59} \right)\left( i \right)\left( i \right)} = i\sqrt {\left( {59} \right)} $
Hence we get the result as $i\sqrt {\left( {59} \right)} $
Note:
Here the student must know that whenever we are given to find the square root of any negative number, then we will always get the imaginary number as our answer because no real number can have the square as negative.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE