Answer
Verified
394.8k+ views
Hint: We first try to form the imaginary numbers for $-59$ using the identities ${{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1$. Then we get the root value in the form of both positive and negative values and imaginary numbers. We also find the decimal value for $\sqrt{59}$.
Complete step-by-step answer:
The square root value of the negative value gives imaginary values.
Therefore, we use the know identity values and relations for imaginary $i=\sqrt{-1}$ where ${{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1$.
Therefore, $-59=\left( -1 \right)\times 59=59{{i}^{2}}$.
Now taking the root value we get $\sqrt{-59}=\sqrt{59{{i}^{2}}}=\pm i\sqrt{59}$.
We can also find the root value in decimal for 59 as 59 is a prime number.
We take 2 digits as a set from the right end and complete the division. For decimal form we take the set from the right side of the decimal.
\[\begin{align}
& 7 \\
& 7\left| \!{\overline {\,
\begin{align}
& \overline{59}.\overline{00}\overline{00} \\
& \underline{49} \\
& 10.00 \\
\end{align} \,}} \right. \\
\end{align}\]
Now we have to enter the decimal part. We keep doing the breaking in the set form till 3-digit place after decimal.
\[\begin{align}
& 7.67 \\
& 146\left| \!{\overline {\,
\begin{align}
& 1000\overline{00} \\
& \underline{876} \\
& 12400 \\
\end{align} \,}} \right. \\
& 1527\left| \!{\overline {\,
\begin{align}
& 12400 \\
& \underline{10689} \\
& 1711 \\
\end{align} \,}} \right. \\
\end{align}\]
So, $\sqrt{-59}=\pm i\sqrt{59}=\pm 7.67i$
Therefore, the square root of $-59$ is $\pm i\sqrt{59}=\pm 7.67i$.
So, the correct answer is “$\pm 7.67i$”.
Note: The long-division method and arranging the set of 2 digits is different for integer and decimal. But taking double for the next division and putting a particular number is the same process for both of them. Since 3 is a non-perfect square number, we will find the value of root 3 using the long division method as shown above.
Complete step-by-step answer:
The square root value of the negative value gives imaginary values.
Therefore, we use the know identity values and relations for imaginary $i=\sqrt{-1}$ where ${{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1$.
Therefore, $-59=\left( -1 \right)\times 59=59{{i}^{2}}$.
Now taking the root value we get $\sqrt{-59}=\sqrt{59{{i}^{2}}}=\pm i\sqrt{59}$.
We can also find the root value in decimal for 59 as 59 is a prime number.
We take 2 digits as a set from the right end and complete the division. For decimal form we take the set from the right side of the decimal.
\[\begin{align}
& 7 \\
& 7\left| \!{\overline {\,
\begin{align}
& \overline{59}.\overline{00}\overline{00} \\
& \underline{49} \\
& 10.00 \\
\end{align} \,}} \right. \\
\end{align}\]
Now we have to enter the decimal part. We keep doing the breaking in the set form till 3-digit place after decimal.
\[\begin{align}
& 7.67 \\
& 146\left| \!{\overline {\,
\begin{align}
& 1000\overline{00} \\
& \underline{876} \\
& 12400 \\
\end{align} \,}} \right. \\
& 1527\left| \!{\overline {\,
\begin{align}
& 12400 \\
& \underline{10689} \\
& 1711 \\
\end{align} \,}} \right. \\
\end{align}\]
So, $\sqrt{-59}=\pm i\sqrt{59}=\pm 7.67i$
Therefore, the square root of $-59$ is $\pm i\sqrt{59}=\pm 7.67i$.
So, the correct answer is “$\pm 7.67i$”.
Note: The long-division method and arranging the set of 2 digits is different for integer and decimal. But taking double for the next division and putting a particular number is the same process for both of them. Since 3 is a non-perfect square number, we will find the value of root 3 using the long division method as shown above.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE