Answer
Verified
468.6k+ views
Hint: To find the square root of the given number $63504$, we will use prime factorisation method. We will write that number as the multiple of the primes. After that it will be written in the form of a group of two. Then, we will select one prime number from each group and multiply all such prime numbers. The square root of $63504$ will be the product of selected prime numbers.
Complete step by step solution: To solve the given problem, we must know the prime factorisation method. By using the method of prime factorisation, we can express the given number as a product of prime numbers. Therefore, we will write the given number $63504$ as the product of primes. Let us do a prime factorisation of $63504$. Note that here $63504$ is an even number so we can start prime factorisation with prime number $2$.
Therefore, we can write $63504 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 7 \times 7$.Now we will take the same prime numbers together and write them in groups of two as shown below.$63504 = \left( {2 \times 2} \right) \times \left( {2 \times 2} \right) \times \left( {3 \times 3} \right) \times \left( {3 \times 3} \right) \times \left( {7 \times 7} \right)$. Now we will take one number from each group. Therefore, we will get $2,2,3,3$ and $7$ from the first, second, third, fourth and fifth group respectively. Hence, the square root of $63504$ will be the product of these numbers $2,2,3,3$ and $7$.Therefore, $\sqrt {63504} = \sqrt {{2^2} \times {2^2} \times {3^2} \times {3^2} \times {7^2}} $.$ \Rightarrow \sqrt {63504} = 2 \times 2 \times 3 \times 3 \times 7$
$ \Rightarrow \sqrt {63504} = 252$
Therefore, the square root of $63504$ is $252$.
Note: If the number is even then it is divisible by $2$. If the sum of all digits of a number is divisible by $3$ then that number is divisible by $3$. Double the last digit of the number and subtract the doubled number from the remaining number (remaining digits). If the result is divisible by $7$ then that number is divisible by $7$. Note that here we will consider positive differences. In the given problem, $49$ is divisible by $7$ because double of last digit $9$ is $18$ and positive difference of $18$ and remaining number (remaining digit) $4$ is $14$ and the number $14$ is divisible by $7$.
Complete step by step solution: To solve the given problem, we must know the prime factorisation method. By using the method of prime factorisation, we can express the given number as a product of prime numbers. Therefore, we will write the given number $63504$ as the product of primes. Let us do a prime factorisation of $63504$. Note that here $63504$ is an even number so we can start prime factorisation with prime number $2$.
$2$ | $63504$ |
$2$ | $31752$ |
$2$ | $15876$ |
$2$ | $7938$ |
$3$ | $3969$ |
$3$ | $1323$ |
$3$ | $441$ |
$3$ | $147$ |
$7$ | $49$ |
$7$ | $7$ |
$1$ |
Therefore, we can write $63504 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 7 \times 7$.Now we will take the same prime numbers together and write them in groups of two as shown below.$63504 = \left( {2 \times 2} \right) \times \left( {2 \times 2} \right) \times \left( {3 \times 3} \right) \times \left( {3 \times 3} \right) \times \left( {7 \times 7} \right)$. Now we will take one number from each group. Therefore, we will get $2,2,3,3$ and $7$ from the first, second, third, fourth and fifth group respectively. Hence, the square root of $63504$ will be the product of these numbers $2,2,3,3$ and $7$.Therefore, $\sqrt {63504} = \sqrt {{2^2} \times {2^2} \times {3^2} \times {3^2} \times {7^2}} $.$ \Rightarrow \sqrt {63504} = 2 \times 2 \times 3 \times 3 \times 7$
$ \Rightarrow \sqrt {63504} = 252$
Therefore, the square root of $63504$ is $252$.
Note: If the number is even then it is divisible by $2$. If the sum of all digits of a number is divisible by $3$ then that number is divisible by $3$. Double the last digit of the number and subtract the doubled number from the remaining number (remaining digits). If the result is divisible by $7$ then that number is divisible by $7$. Note that here we will consider positive differences. In the given problem, $49$ is divisible by $7$ because double of last digit $9$ is $18$ and positive difference of $18$ and remaining number (remaining digit) $4$ is $14$ and the number $14$ is divisible by $7$.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE