Answer
Verified
468.3k+ views
Hint: We have \[7-4\sqrt{3},\] we are asked to find the square root. First, we will rearrange \[7-4\sqrt{3}\] in such a way that it is a square of some term. In order to rearrange, first, we will use \[2=\sqrt{4}\] and then split 7 = 3 + 4 using these. Then we will get \[7-4\sqrt{3}\] as \[{{\left( 2-\sqrt{3} \right)}^{2}}.\] So, taking the square root on both sides, we will get our solution.
Complete step-by-step answer:
So, we are asked to find the square root of \[7-4\sqrt{3}.\] To do so, we will try to write \[7-4\sqrt{3}\] in such a way that it is a square of some numbers by rearranging the terms. Now,
\[2=\sqrt{4}\]
So,
\[7-4\sqrt{3}=7-2\times \left( 2\sqrt{3} \right)\]
\[\Rightarrow 7-4\sqrt{3}=7-2\sqrt{4}\times \sqrt{3}\]
We can write,
\[\sqrt{4}\times \sqrt{3}=\sqrt{12}\]
So, we get,
\[\Rightarrow 7-2\sqrt{12}\]
Now, we will split 7 into 2 terms, i.e. 7 = 3 + 4. Now, putting this in the above term, we will get,
\[\Rightarrow 3+4-2\sqrt{12}\]
We can write 3 as \[{{\left( \sqrt{3} \right)}^{2}}\] and 4 as \[{{\left( \sqrt{4} \right)}^{2}}.\]
And so, we get,
\[\Rightarrow {{\left( \sqrt{3} \right)}^{2}}+{{\left( \sqrt{4} \right)}^{2}}-2\sqrt{12}\]
We can write, \[\sqrt{12}=\sqrt{3}\times \sqrt{4}.\]
\[\Rightarrow {{\left( \sqrt{3} \right)}^{2}}+{{\left( \sqrt{4} \right)}^{2}}-2\times \sqrt{3}\times \sqrt{4}\]
We know that, \[{{a}^{2}}+{{b}^{2}}-2ab={{\left( a-b \right)}^{2}}.\]
So, we get,
\[\Rightarrow {{\left( \sqrt{4}-\sqrt{3} \right)}^{2}}\]
Hence, we have,
\[7-2\sqrt{3}={{\left( \sqrt{4}-\sqrt{3} \right)}^{2}}\]
Also, we know that \[\sqrt{4}=2,\] so we get,
\[\left( 7-2\sqrt{3} \right)={{\left( 2-\sqrt{3} \right)}^{2}}\]
Now taking the square root on both the sides, we get,
\[\Rightarrow \sqrt{7-2\sqrt{3}}=\sqrt{{{\left( 2-\sqrt{3} \right)}^{2}}}\]
On further simplification, we get,
\[\sqrt{7-2\sqrt{3}}=2-\sqrt{3}\]
So, the correct answer is “Option C”.
Note: Another way to look for the square root is, we have 4 options, so we will square each option and see which will end up as \[7-2\sqrt{3}\] and that would be the correct option.
\[\left( a \right)2+\sqrt{3}\]
Squaring \[2+\sqrt{3},\] we get,
\[{{\left( 2+\sqrt{3} \right)}^{2}}={{2}^{2}}+{{\left( \sqrt{3} \right)}^{2}}+2\times \sqrt{3}\times 2\]
\[\Rightarrow {{\left( 2+\sqrt{3} \right)}^{2}}=4+3+4\sqrt{3}\]
\[\Rightarrow {{\left( 2+\sqrt{3} \right)}^{2}}=7+4\sqrt{3}\]
Hence, \[7+4\sqrt{3}\ne 7-4\sqrt{3}\]
Thus, option (a) is not our required answer.
\[\left( b \right)\left( 5-\sqrt{3} \right)\]
Squaring \[\left( 5-\sqrt{3} \right),\] we get,
\[\Rightarrow \left( 5-\sqrt{3} \right)={{5}^{2}}+{{\left( \sqrt{3} \right)}^{2}}-5\times 2\times \sqrt{3}\]
We know that, \[{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab.\]
\[\Rightarrow \left( 5-\sqrt{3} \right)=25+3-10\sqrt{3}\]
\[\Rightarrow {{\left( 5-\sqrt{3} \right)}^{2}}=28-10\sqrt{3}\]
Hence, \[5-\sqrt{3}\ne 7-4\sqrt{3}\]
Thus, option (b) is not our required answer.
\[\left( c \right)2-\sqrt{3}\]
Squaring \[\left( 2-\sqrt{3} \right),\] we get,
\[{{\left( 2-\sqrt{3} \right)}^{2}}={{2}^{2}}+{{\left( \sqrt{3} \right)}^{2}}-2\times 2\times \sqrt{3}\]
\[\Rightarrow {{\left( 2-\sqrt{3} \right)}^{2}}=4+3-4\sqrt{3}\]
\[\Rightarrow {{\left( 2-\sqrt{3} \right)}^{2}}=7-4\sqrt{3}\]
Hence, \[7-4\sqrt{3}=7-4\sqrt{3}\]
Thus, option (c) is our required answer.
Complete step-by-step answer:
So, we are asked to find the square root of \[7-4\sqrt{3}.\] To do so, we will try to write \[7-4\sqrt{3}\] in such a way that it is a square of some numbers by rearranging the terms. Now,
\[2=\sqrt{4}\]
So,
\[7-4\sqrt{3}=7-2\times \left( 2\sqrt{3} \right)\]
\[\Rightarrow 7-4\sqrt{3}=7-2\sqrt{4}\times \sqrt{3}\]
We can write,
\[\sqrt{4}\times \sqrt{3}=\sqrt{12}\]
So, we get,
\[\Rightarrow 7-2\sqrt{12}\]
Now, we will split 7 into 2 terms, i.e. 7 = 3 + 4. Now, putting this in the above term, we will get,
\[\Rightarrow 3+4-2\sqrt{12}\]
We can write 3 as \[{{\left( \sqrt{3} \right)}^{2}}\] and 4 as \[{{\left( \sqrt{4} \right)}^{2}}.\]
And so, we get,
\[\Rightarrow {{\left( \sqrt{3} \right)}^{2}}+{{\left( \sqrt{4} \right)}^{2}}-2\sqrt{12}\]
We can write, \[\sqrt{12}=\sqrt{3}\times \sqrt{4}.\]
\[\Rightarrow {{\left( \sqrt{3} \right)}^{2}}+{{\left( \sqrt{4} \right)}^{2}}-2\times \sqrt{3}\times \sqrt{4}\]
We know that, \[{{a}^{2}}+{{b}^{2}}-2ab={{\left( a-b \right)}^{2}}.\]
So, we get,
\[\Rightarrow {{\left( \sqrt{4}-\sqrt{3} \right)}^{2}}\]
Hence, we have,
\[7-2\sqrt{3}={{\left( \sqrt{4}-\sqrt{3} \right)}^{2}}\]
Also, we know that \[\sqrt{4}=2,\] so we get,
\[\left( 7-2\sqrt{3} \right)={{\left( 2-\sqrt{3} \right)}^{2}}\]
Now taking the square root on both the sides, we get,
\[\Rightarrow \sqrt{7-2\sqrt{3}}=\sqrt{{{\left( 2-\sqrt{3} \right)}^{2}}}\]
On further simplification, we get,
\[\sqrt{7-2\sqrt{3}}=2-\sqrt{3}\]
So, the correct answer is “Option C”.
Note: Another way to look for the square root is, we have 4 options, so we will square each option and see which will end up as \[7-2\sqrt{3}\] and that would be the correct option.
\[\left( a \right)2+\sqrt{3}\]
Squaring \[2+\sqrt{3},\] we get,
\[{{\left( 2+\sqrt{3} \right)}^{2}}={{2}^{2}}+{{\left( \sqrt{3} \right)}^{2}}+2\times \sqrt{3}\times 2\]
\[\Rightarrow {{\left( 2+\sqrt{3} \right)}^{2}}=4+3+4\sqrt{3}\]
\[\Rightarrow {{\left( 2+\sqrt{3} \right)}^{2}}=7+4\sqrt{3}\]
Hence, \[7+4\sqrt{3}\ne 7-4\sqrt{3}\]
Thus, option (a) is not our required answer.
\[\left( b \right)\left( 5-\sqrt{3} \right)\]
Squaring \[\left( 5-\sqrt{3} \right),\] we get,
\[\Rightarrow \left( 5-\sqrt{3} \right)={{5}^{2}}+{{\left( \sqrt{3} \right)}^{2}}-5\times 2\times \sqrt{3}\]
We know that, \[{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab.\]
\[\Rightarrow \left( 5-\sqrt{3} \right)=25+3-10\sqrt{3}\]
\[\Rightarrow {{\left( 5-\sqrt{3} \right)}^{2}}=28-10\sqrt{3}\]
Hence, \[5-\sqrt{3}\ne 7-4\sqrt{3}\]
Thus, option (b) is not our required answer.
\[\left( c \right)2-\sqrt{3}\]
Squaring \[\left( 2-\sqrt{3} \right),\] we get,
\[{{\left( 2-\sqrt{3} \right)}^{2}}={{2}^{2}}+{{\left( \sqrt{3} \right)}^{2}}-2\times 2\times \sqrt{3}\]
\[\Rightarrow {{\left( 2-\sqrt{3} \right)}^{2}}=4+3-4\sqrt{3}\]
\[\Rightarrow {{\left( 2-\sqrt{3} \right)}^{2}}=7-4\sqrt{3}\]
Hence, \[7-4\sqrt{3}=7-4\sqrt{3}\]
Thus, option (c) is our required answer.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE