Answer
Verified
421.2k+ views
Hint: The given equation is a quadratic equation. The sum and product of the roots of the quadratic equation can be calculated by using a formula that is:
Sum of the roots $ = \dfrac{{ - b}}{a}$
Product of the roots $ = \dfrac{c}{a}$
Where $a$ is the coefficient of ${x^2}$, $b$ is the coefficient of $x$ and $c$ is the constant term of a quadratic equation $a{x^2} + bx + c = 0$.
Complete step-by-step solution:
The given quadratic equation is ${x^2} - 5x + 8 = 0$.
Now, comparing the given quadratic equation with the general form of a quadratic equation. We get,
$a = 1$ , $b = - 5$ and $c = 8$.
Now, applying the formula for the sum of the roots. we get,
Sum of the roots $ = \dfrac{{ - b}}{a} = \dfrac{{ - \left( { - 5} \right)}}{1} = 5$
And, applying the formula for the product of the roots. we get.
Product of the roots $ = \dfrac{c}{a} = \dfrac{8}{1} = 8$.
Thus, the sum of roots of the given quadratic equation is $5$ and the product of the roots is $8$.
Note: The discriminant of a quadratic equation $D = {b^2} - 4ac$. If the discriminant of a quadratic equation is negative then the roots will be imaginary. If discriminant is zero then both the roots are equal and if the discriminant is positive then both the roots are real and distinct.
Now, the discriminant of the given quadratic equation $D = {\left( 5 \right)^2} - 4 \times 1 \times 8 = 25 - 32 = - 7$.
Since the discriminant is negative so, the roots of the given quadratic equation are imaginary.
If the given equation is cubic that is $a{x^3} + b{x^2} + cx + d = 0$. Then,
The sum of the roots of the cubic equation is given by $\dfrac{{ - b}}{a}$.
The product of the roots is given by $\dfrac{{ - d}}{a}$.
Sum of the roots $ = \dfrac{{ - b}}{a}$
Product of the roots $ = \dfrac{c}{a}$
Where $a$ is the coefficient of ${x^2}$, $b$ is the coefficient of $x$ and $c$ is the constant term of a quadratic equation $a{x^2} + bx + c = 0$.
Complete step-by-step solution:
The given quadratic equation is ${x^2} - 5x + 8 = 0$.
Now, comparing the given quadratic equation with the general form of a quadratic equation. We get,
$a = 1$ , $b = - 5$ and $c = 8$.
Now, applying the formula for the sum of the roots. we get,
Sum of the roots $ = \dfrac{{ - b}}{a} = \dfrac{{ - \left( { - 5} \right)}}{1} = 5$
And, applying the formula for the product of the roots. we get.
Product of the roots $ = \dfrac{c}{a} = \dfrac{8}{1} = 8$.
Thus, the sum of roots of the given quadratic equation is $5$ and the product of the roots is $8$.
Note: The discriminant of a quadratic equation $D = {b^2} - 4ac$. If the discriminant of a quadratic equation is negative then the roots will be imaginary. If discriminant is zero then both the roots are equal and if the discriminant is positive then both the roots are real and distinct.
Now, the discriminant of the given quadratic equation $D = {\left( 5 \right)^2} - 4 \times 1 \times 8 = 25 - 32 = - 7$.
Since the discriminant is negative so, the roots of the given quadratic equation are imaginary.
If the given equation is cubic that is $a{x^3} + b{x^2} + cx + d = 0$. Then,
The sum of the roots of the cubic equation is given by $\dfrac{{ - b}}{a}$.
The product of the roots is given by $\dfrac{{ - d}}{a}$.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell