Find the sum of first n terms of:
i) 4 + 44 + 444 +....
ii) 0.7 + 0.77 + 0.777 +....
Answer
Verified
414.1k+ views
Hint: We need to convert the given terms into particular series where we can apply some formula to get the desired result.
i)4 + 44 + 444 +.... up to n terms
4(1+11+111+.....up to n terms)
Dividing and multiplying the above series of 9, we get
$$ \Rightarrow \dfrac{4}{9}\left( {9 + 99 + 999 + ....up\;to\;n\;terms} \right)$$
$$ \Rightarrow \dfrac{4}{9}\left[ {(10 - 1) + ({{10}^2} - 1) + ....up\;to\;n\;terms} \right]$$
Separating the terms inside brackets,
$$ \Rightarrow \dfrac{4}{9}\left[ {(10 + {{10}^2} + .... + {{10}^n}) - (1 + 1 + 1 + ...n\;times)} \right]$$
The terms are $$10 + {10^2} + .... + {10^n}$$ in geometric progression (G.P.) with a = 10, r = 10, using the formula of sum of n terms of G.P. $$ \Rightarrow {S_n} = \left[ {\dfrac{{a({r^n} - 1)}}{{(r - 1)}}} \right],r > 1$$
$$ \Rightarrow \dfrac{4}{9} \cdot 10\left[ {\dfrac{{({{10}^n} - 1)}}{{(10 - 1)}}} \right] - n(1)$$
$$ \Rightarrow \dfrac{4}{9}\left[ {\dfrac{{10}}{9}\left( {{{10}^n} - 1} \right) - n} \right]$$
$\therefore $ The sum of 4 + 44 + 444 +.... up to n terms = $$\dfrac{4}{9}\left[ {\dfrac{{10}}{9}\left( {{{10}^n} - 1} \right) - n} \right]$$
ii)We have to find the Sum = 0.7 + 0.77 + 0.777 +....up to n terms
Dividing and multiplying the above series with 9, we get
$$ \Rightarrow \dfrac{7}{9}\left( {0.9 + 0.99 + 0.999 + ....up\;to\;n\;terms} \right)$$
$$ \Rightarrow \dfrac{7}{9}\left[ {(1 - 0.1) + (1 - 0.01) + (1 - 0.001)....up\;to\;n\;terms} \right]$$
Separating the terms inside the bracket
$$ \Rightarrow \dfrac{7}{9}\left[ {(1 + 1 + 1 + ...n\;times) - \left( {\dfrac{1}{{10}} + \dfrac{1}{{100}} + \dfrac{1}{{1000}} + ....up\;to\;n\;terms} \right)} \right]$$
The terms $$\left( {\dfrac{1}{{10}} + \dfrac{1}{{100}} + \dfrac{1}{{1000}} + ....up\;to\;n\;terms} \right)$$ are in G.P. with a = $$\dfrac{1}{{10}}$$, r = $$\dfrac{1}{{10}}$$, using the formula of sum of n terms of G.P. $$ \Rightarrow {S_n} = \left[ {\dfrac{{a(1 - {r^n})}}{{(1 - r)}}} \right],r < 1$$
$$ \Rightarrow \dfrac{7}{9}\left[ {n - 0.1 \times \dfrac{{1 - {{(0.1)}^n}}}{{1 - 0.1}}} \right]$$
$$ \Rightarrow \dfrac{7}{{81}}\left[ {9n - 1 + {{10}^{ - n}}} \right]$$
$\therefore $ The sum of 0.7 + 0.77 + 0.777 +....up to n terms = $$\dfrac{7}{{81}}\left[ {9n - 1 + {{10}^{ - n}}} \right]$$
Note:
We need to follow the step by step procedure just as shown above to get the solution.
We have the sum of first ‘n’ terms in a geometric progression with first term as ‘a’ and common ratio as ‘r’ is given by
$${S_n} = \left[ {\dfrac{{a({r^n} - 1)}}{{(r - 1)}}} \right],\;when\,r > 1$$
$${S_n} = \left[ {\dfrac{{a(1 - {r^n})}}{{(1 - r)}}} \right],\;when\;r < 1$$.
i)4 + 44 + 444 +.... up to n terms
4(1+11+111+.....up to n terms)
Dividing and multiplying the above series of 9, we get
$$ \Rightarrow \dfrac{4}{9}\left( {9 + 99 + 999 + ....up\;to\;n\;terms} \right)$$
$$ \Rightarrow \dfrac{4}{9}\left[ {(10 - 1) + ({{10}^2} - 1) + ....up\;to\;n\;terms} \right]$$
Separating the terms inside brackets,
$$ \Rightarrow \dfrac{4}{9}\left[ {(10 + {{10}^2} + .... + {{10}^n}) - (1 + 1 + 1 + ...n\;times)} \right]$$
The terms are $$10 + {10^2} + .... + {10^n}$$ in geometric progression (G.P.) with a = 10, r = 10, using the formula of sum of n terms of G.P. $$ \Rightarrow {S_n} = \left[ {\dfrac{{a({r^n} - 1)}}{{(r - 1)}}} \right],r > 1$$
$$ \Rightarrow \dfrac{4}{9} \cdot 10\left[ {\dfrac{{({{10}^n} - 1)}}{{(10 - 1)}}} \right] - n(1)$$
$$ \Rightarrow \dfrac{4}{9}\left[ {\dfrac{{10}}{9}\left( {{{10}^n} - 1} \right) - n} \right]$$
$\therefore $ The sum of 4 + 44 + 444 +.... up to n terms = $$\dfrac{4}{9}\left[ {\dfrac{{10}}{9}\left( {{{10}^n} - 1} \right) - n} \right]$$
ii)We have to find the Sum = 0.7 + 0.77 + 0.777 +....up to n terms
Dividing and multiplying the above series with 9, we get
$$ \Rightarrow \dfrac{7}{9}\left( {0.9 + 0.99 + 0.999 + ....up\;to\;n\;terms} \right)$$
$$ \Rightarrow \dfrac{7}{9}\left[ {(1 - 0.1) + (1 - 0.01) + (1 - 0.001)....up\;to\;n\;terms} \right]$$
Separating the terms inside the bracket
$$ \Rightarrow \dfrac{7}{9}\left[ {(1 + 1 + 1 + ...n\;times) - \left( {\dfrac{1}{{10}} + \dfrac{1}{{100}} + \dfrac{1}{{1000}} + ....up\;to\;n\;terms} \right)} \right]$$
The terms $$\left( {\dfrac{1}{{10}} + \dfrac{1}{{100}} + \dfrac{1}{{1000}} + ....up\;to\;n\;terms} \right)$$ are in G.P. with a = $$\dfrac{1}{{10}}$$, r = $$\dfrac{1}{{10}}$$, using the formula of sum of n terms of G.P. $$ \Rightarrow {S_n} = \left[ {\dfrac{{a(1 - {r^n})}}{{(1 - r)}}} \right],r < 1$$
$$ \Rightarrow \dfrac{7}{9}\left[ {n - 0.1 \times \dfrac{{1 - {{(0.1)}^n}}}{{1 - 0.1}}} \right]$$
$$ \Rightarrow \dfrac{7}{{81}}\left[ {9n - 1 + {{10}^{ - n}}} \right]$$
$\therefore $ The sum of 0.7 + 0.77 + 0.777 +....up to n terms = $$\dfrac{7}{{81}}\left[ {9n - 1 + {{10}^{ - n}}} \right]$$
Note:
We need to follow the step by step procedure just as shown above to get the solution.
We have the sum of first ‘n’ terms in a geometric progression with first term as ‘a’ and common ratio as ‘r’ is given by
$${S_n} = \left[ {\dfrac{{a({r^n} - 1)}}{{(r - 1)}}} \right],\;when\,r > 1$$
$${S_n} = \left[ {\dfrac{{a(1 - {r^n})}}{{(1 - r)}}} \right],\;when\;r < 1$$.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE