Find the sum of series 1, 3, 5, 7, 9,…… up to n terms?
Answer
Verified
412.8k+ views
Hint: We can see that the given series in the problem follows an Arithmetic Progression (AP). We find the ${{n}^{th}}$ term of the series by using the first term and common difference of the given series. Once, we find the ${{n}^{th}}$ terms, we use the sum of n terms of Arithmetic Progression (AP) to get the desired result.
Complete step-by-step solution:
According to the problem, we have a series given as 1, 3, 5, 7, 9,……. We need to find the sum of the elements in this series up to n terms.
We know that an Arithmetic Progression (AP) is of form a, a+d, a+2d,…….., where ‘a’ is known as the first term and ‘d’ is known as common difference.
We can see that the difference between any two consecutive numbers is 2. We can see that the given series are in AP (Arithmetic Progression) with the first term ‘1’ and common difference ‘2’.
Let us find the ${{n}^{th}}$ term for the given series. We know that ${{n}^{th}}$ term of an Arithmetic Progression (AP) is defined as ${{T}_{n}}=a+\left( n-1 \right)d$.
So, we have ${{n}^{th}}$ term for the given series as ${{T}_{n}}=1+\left( n-1 \right)2$.
${{T}_{n}}=1+2n-2$.
${{T}_{n}}=2n-1$ ---(1).
Now let us find the sum of n terms of the given series. We know that sum of n terms of an Arithmetic Progression (AP) is defined as ${{S}_{n}}=\dfrac{n}{2}\times \left( a+{{T}_{n}} \right)$.
So, we have sum of n terms of the given series as ${{S}_{n}}=\dfrac{n}{2}\times \left( 1+2n-1 \right)$.
${{S}_{n}}=\dfrac{n}{2}\times \left( 2n \right)$.
${{S}_{n}}=n\times n$.
${{S}_{n}}={{n}^{2}}$.
We have found the sum of n terms of the series 1, 3, 5, 7, …… is ${{n}^{2}}$.
$\therefore$ The sum of series 1, 3, 5, 7, 9,…… up to n terms is ${{n}^{2}}$.
Note: We can also use the sum of ‘n’ natural numbers to find the sum of the given series after calculating the ${{n}^{th}}$ term. Whenever we see a problem following Arithmetic Progression (AP), we make use of ${{n}^{th}}$ term. Similarly, we can expect problems to find the sum of even numbers up to n-terms.
Complete step-by-step solution:
According to the problem, we have a series given as 1, 3, 5, 7, 9,……. We need to find the sum of the elements in this series up to n terms.
We know that an Arithmetic Progression (AP) is of form a, a+d, a+2d,…….., where ‘a’ is known as the first term and ‘d’ is known as common difference.
We can see that the difference between any two consecutive numbers is 2. We can see that the given series are in AP (Arithmetic Progression) with the first term ‘1’ and common difference ‘2’.
Let us find the ${{n}^{th}}$ term for the given series. We know that ${{n}^{th}}$ term of an Arithmetic Progression (AP) is defined as ${{T}_{n}}=a+\left( n-1 \right)d$.
So, we have ${{n}^{th}}$ term for the given series as ${{T}_{n}}=1+\left( n-1 \right)2$.
${{T}_{n}}=1+2n-2$.
${{T}_{n}}=2n-1$ ---(1).
Now let us find the sum of n terms of the given series. We know that sum of n terms of an Arithmetic Progression (AP) is defined as ${{S}_{n}}=\dfrac{n}{2}\times \left( a+{{T}_{n}} \right)$.
So, we have sum of n terms of the given series as ${{S}_{n}}=\dfrac{n}{2}\times \left( 1+2n-1 \right)$.
${{S}_{n}}=\dfrac{n}{2}\times \left( 2n \right)$.
${{S}_{n}}=n\times n$.
${{S}_{n}}={{n}^{2}}$.
We have found the sum of n terms of the series 1, 3, 5, 7, …… is ${{n}^{2}}$.
$\therefore$ The sum of series 1, 3, 5, 7, 9,…… up to n terms is ${{n}^{2}}$.
Note: We can also use the sum of ‘n’ natural numbers to find the sum of the given series after calculating the ${{n}^{th}}$ term. Whenever we see a problem following Arithmetic Progression (AP), we make use of ${{n}^{th}}$ term. Similarly, we can expect problems to find the sum of even numbers up to n-terms.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE