Answer
Verified
429k+ views
Hint: Here in this question, we have to find the sum of finite geometric series. The geometric series is defined as the series with a constant ratio between the two successive terms. Then by considering the geometric series we have found the sum of the series.
Complete step-by-step solution:
In mathematics we have three types of series namely, arithmetic series, geometric series and harmonic series. The geometric series is defined as the series with a constant ratio between the two successive terms. The finite geometric series is generally represented as \[a,ar,a{r^2},...,a{r^n}\], where a is first term and r is a common ratio.
Now consider the series $4096 – 512 + 64 - …..$
Here the term a is known as first term. the value of a is 4096.
The r is the common ratio of the series. It is defined as \[r = \dfrac{{{a_2}}}{{{a_1}}}\]
The value of r is determined by \[r = \dfrac{{ - 512}}{{4096}} = - \dfrac{1}{8}\]
Now we have to find the sum of finite geometric series, the sum for finite geometric series is defined by \[{S_n}\]
Here the value of r is less than 1 we have a formula for the sum of geometric series and it is defined as
\[{S_n} = \dfrac{{a(1 - {r^n})}}{{(1 - r)}}\]
Here the value of n is 5.
Therefore by substituting the values in the formula we have
\[{S_5} = \dfrac{{4096\left( {1 - {{\left( {\dfrac{{ - 1}}{8}} \right)}^5}} \right)}}{{1 - \left( {\dfrac{{ - 1}}{8}} \right)}}\]
On simplifying we have
\[{S_5} = \dfrac{{4096\left( {1 + {{\left( {\dfrac{1}{8}} \right)}^5}} \right)}}{{1 + \dfrac{1}{8}}}\]
\[
\Rightarrow {S_5} = \dfrac{{4096\left( {1 + \dfrac{1}{{32768}}} \right)}}{{\dfrac{{8 + 1}}{8}}} \\
\Rightarrow {S_5} = \dfrac{{4096\left( {\dfrac{{32768 + 1}}{{32768}}} \right)}}{{\dfrac{{8 + 1}}{8}}} \\
\Rightarrow {S_5} = \dfrac{{4096\left( {\dfrac{{32769}}{{32768}}} \right)}}{{\dfrac{9}{8}}} \\
\Rightarrow {S_5} = \dfrac{{4096 \times 32769}}{{32768}} \times \dfrac{8}{9} \\
\Rightarrow {S_5} = 3641 \\
\]
Hence the sum of geometric series $4096 – 512 + 64 - … to\, 5$ terms is 3641.
Note: Three different forms of series are arithmetic series, geometric series and harmonic series. For the arithmetic series is the series with common differences. The geometric series is the series with a common ratio. The sum is known as the total value of the given series.
Complete step-by-step solution:
In mathematics we have three types of series namely, arithmetic series, geometric series and harmonic series. The geometric series is defined as the series with a constant ratio between the two successive terms. The finite geometric series is generally represented as \[a,ar,a{r^2},...,a{r^n}\], where a is first term and r is a common ratio.
Now consider the series $4096 – 512 + 64 - …..$
Here the term a is known as first term. the value of a is 4096.
The r is the common ratio of the series. It is defined as \[r = \dfrac{{{a_2}}}{{{a_1}}}\]
The value of r is determined by \[r = \dfrac{{ - 512}}{{4096}} = - \dfrac{1}{8}\]
Now we have to find the sum of finite geometric series, the sum for finite geometric series is defined by \[{S_n}\]
Here the value of r is less than 1 we have a formula for the sum of geometric series and it is defined as
\[{S_n} = \dfrac{{a(1 - {r^n})}}{{(1 - r)}}\]
Here the value of n is 5.
Therefore by substituting the values in the formula we have
\[{S_5} = \dfrac{{4096\left( {1 - {{\left( {\dfrac{{ - 1}}{8}} \right)}^5}} \right)}}{{1 - \left( {\dfrac{{ - 1}}{8}} \right)}}\]
On simplifying we have
\[{S_5} = \dfrac{{4096\left( {1 + {{\left( {\dfrac{1}{8}} \right)}^5}} \right)}}{{1 + \dfrac{1}{8}}}\]
\[
\Rightarrow {S_5} = \dfrac{{4096\left( {1 + \dfrac{1}{{32768}}} \right)}}{{\dfrac{{8 + 1}}{8}}} \\
\Rightarrow {S_5} = \dfrac{{4096\left( {\dfrac{{32768 + 1}}{{32768}}} \right)}}{{\dfrac{{8 + 1}}{8}}} \\
\Rightarrow {S_5} = \dfrac{{4096\left( {\dfrac{{32769}}{{32768}}} \right)}}{{\dfrac{9}{8}}} \\
\Rightarrow {S_5} = \dfrac{{4096 \times 32769}}{{32768}} \times \dfrac{8}{9} \\
\Rightarrow {S_5} = 3641 \\
\]
Hence the sum of geometric series $4096 – 512 + 64 - … to\, 5$ terms is 3641.
Note: Three different forms of series are arithmetic series, geometric series and harmonic series. For the arithmetic series is the series with common differences. The geometric series is the series with a common ratio. The sum is known as the total value of the given series.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE