Answer
Verified
453.3k+ views
Hint: A series is a description of the operation of adding infinitely many quantities, one after the other, to a given starting quantity. The sum of a series is the sum of the terms of the given series. An infinite series has infinite numbers of terms. The sum \[{S_n}\] of the first n terms of an infinite series is called a partial sum.
Some of the most common types of series are Arithmetic series, Geometric series, Harmonic series, and Fibonacci Numbers series.
First, find the nature of the progression of the given series. The behavior of the series depends on the common difference and the ratio; if it is positive then, the sequence is increasing towards the infinity, and if the difference is negative, then the series is decreasing to the negative infinity.
Complete step by step answer:
The given series is \[2 + 5 + 14 + 41 + 122 + ....\]
The differences of the consecutive term of the series are in G.P
\[3,9,27,81,......\]
For the sum of the given series, let the \[{n^{th}}\] term of the series be \[{t_n}\]; hence it can be written as
\[{S_n} = 2 + 5 + 14 + 41 + 122 + .... + {t_{n - 1}} + {t_n} - - - (i)\]
By increasing one place, this series can be written as
\[{S_n} = \mathop \_\nolimits^{} 2 + 5 + 14 + 41 + 122 + .... + {t_{n - 1}} + {t_n} - - - (ii)\]
Now subtract equation (ii) from (i), we get:
\[
{S_n} = 2 + 5 + 14 + 41 + 122 + .... + {t_{n - 1}} + {t_n} \\
\underline {{S_n} = {}_ - \mathop {}\nolimits^{} 2 + 5 + 14 + 41 + 122 + .... + {t_{n - 1}} + {t_n}} \\
0 = 2 + 3 + 9 + 27 + 81........ + {3^{n - 1}} + \left( { - {t_n}} \right) \\
\]
Here, ${3^{n - 1}}$ is the second-last term as we can see that the terms are increasing as the raised power of 3 only. So, the term can be written as:
\[
0 = 2 + 3 + 9 + 27 + 81........ + {3^{n - 1}} + \left( { - {t_n}} \right) \\
0 = 2 + 3 + {3^2} + {3^3} + {3^4}........ + {3^{n - 1}} + \left( { - {t_n}} \right) \\
\]
Since in the sequence after the first term, the sequence is in G.P, hence it can be written as
\[
0 = 2 + \left( {3 + {3^2} + {3^3} + {3^4}........ + {3^{n - 1}}} \right) + \left( { - {t_n}} \right) \\
{t_n} = 2 + \dfrac{{3\left( {{3^{n - 1}} - 1} \right)}}{{3 - 1}} \\
= 2 + \dfrac{{3\left( {{3^{n - 1}} - 1} \right)}}{2} \\
= \dfrac{{4 + {3^n} - 3}}{2} \\
= \dfrac{{{3^n} + 1}}{2} \\
\]
Hence the \[{n^{th}}\]of the sequence is \[{t_n} = \dfrac{{{3^n} + 1}}{2}\]which satisfies the sequence,
Now for the sum of the sequence till \[{t_n}\] can be written as
\[
{S_n} = \sum\limits_{n = 1}^n {\dfrac{{{3^n} + 1}}{2}} \\
= \dfrac{1}{2}\sum\limits_{n = 1}^n {{3^{^n}} + 1} \\
\]
Hence by substituting the values of n=0, 1, 2, 3, 4… in the sum
\[
{S_n} = \dfrac{1}{2}\sum\limits_{n = 1}^n {{3^{^n}} + 1} \\
= \dfrac{1}{2}\left[ {\left( {{3^1} + {3^2} + {3^3} + ..... + {3^n}} \right) + n} \right] \\
\]
The submission of a G.P. series is \[{S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}};r > 1\], hence
\[
{S_n} = \dfrac{1}{2}\left[ {\left( {{3^1} + {3^2} + {3^3} + ..... + {3^n}} \right) + n} \right] \\
= \dfrac{1}{2}\left[ {\dfrac{{3\left( {{3^n} - 1} \right)}}{2} + n} \right] \\
\]
Hence the sum of the series\[2 + 5 + 14 + 41 + 122 + ....\]up to n terms is
\[{S_n} = \dfrac{1}{2}\left[ {\dfrac{{3\left( {{3^n} - 1} \right)}}{2} + n} \right]\]
Now for the\[{S_8}\], we get:
\[
{S_n} = \dfrac{1}{2}\left[ {\dfrac{{3\left( {{3^n} - 1} \right)}}{2} + n} \right] \\
{S_8} = \dfrac{1}{2}\left[ {\dfrac{{3\left( {{3^8} - 1} \right)}}{2} + 8} \right] \\
\]
Note: Before finding the sum of the series, it is necessary to study the nature of the series since it makes the process easy and reduces the number of steps to find the answer. Students often make mistakes while approximating the type of series and applying the formula for the sum.
Some of the most common types of series are Arithmetic series, Geometric series, Harmonic series, and Fibonacci Numbers series.
First, find the nature of the progression of the given series. The behavior of the series depends on the common difference and the ratio; if it is positive then, the sequence is increasing towards the infinity, and if the difference is negative, then the series is decreasing to the negative infinity.
Complete step by step answer:
The given series is \[2 + 5 + 14 + 41 + 122 + ....\]
The differences of the consecutive term of the series are in G.P
\[3,9,27,81,......\]
For the sum of the given series, let the \[{n^{th}}\] term of the series be \[{t_n}\]; hence it can be written as
\[{S_n} = 2 + 5 + 14 + 41 + 122 + .... + {t_{n - 1}} + {t_n} - - - (i)\]
By increasing one place, this series can be written as
\[{S_n} = \mathop \_\nolimits^{} 2 + 5 + 14 + 41 + 122 + .... + {t_{n - 1}} + {t_n} - - - (ii)\]
Now subtract equation (ii) from (i), we get:
\[
{S_n} = 2 + 5 + 14 + 41 + 122 + .... + {t_{n - 1}} + {t_n} \\
\underline {{S_n} = {}_ - \mathop {}\nolimits^{} 2 + 5 + 14 + 41 + 122 + .... + {t_{n - 1}} + {t_n}} \\
0 = 2 + 3 + 9 + 27 + 81........ + {3^{n - 1}} + \left( { - {t_n}} \right) \\
\]
Here, ${3^{n - 1}}$ is the second-last term as we can see that the terms are increasing as the raised power of 3 only. So, the term can be written as:
\[
0 = 2 + 3 + 9 + 27 + 81........ + {3^{n - 1}} + \left( { - {t_n}} \right) \\
0 = 2 + 3 + {3^2} + {3^3} + {3^4}........ + {3^{n - 1}} + \left( { - {t_n}} \right) \\
\]
Since in the sequence after the first term, the sequence is in G.P, hence it can be written as
\[
0 = 2 + \left( {3 + {3^2} + {3^3} + {3^4}........ + {3^{n - 1}}} \right) + \left( { - {t_n}} \right) \\
{t_n} = 2 + \dfrac{{3\left( {{3^{n - 1}} - 1} \right)}}{{3 - 1}} \\
= 2 + \dfrac{{3\left( {{3^{n - 1}} - 1} \right)}}{2} \\
= \dfrac{{4 + {3^n} - 3}}{2} \\
= \dfrac{{{3^n} + 1}}{2} \\
\]
Hence the \[{n^{th}}\]of the sequence is \[{t_n} = \dfrac{{{3^n} + 1}}{2}\]which satisfies the sequence,
Now for the sum of the sequence till \[{t_n}\] can be written as
\[
{S_n} = \sum\limits_{n = 1}^n {\dfrac{{{3^n} + 1}}{2}} \\
= \dfrac{1}{2}\sum\limits_{n = 1}^n {{3^{^n}} + 1} \\
\]
Hence by substituting the values of n=0, 1, 2, 3, 4… in the sum
\[
{S_n} = \dfrac{1}{2}\sum\limits_{n = 1}^n {{3^{^n}} + 1} \\
= \dfrac{1}{2}\left[ {\left( {{3^1} + {3^2} + {3^3} + ..... + {3^n}} \right) + n} \right] \\
\]
The submission of a G.P. series is \[{S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}};r > 1\], hence
\[
{S_n} = \dfrac{1}{2}\left[ {\left( {{3^1} + {3^2} + {3^3} + ..... + {3^n}} \right) + n} \right] \\
= \dfrac{1}{2}\left[ {\dfrac{{3\left( {{3^n} - 1} \right)}}{2} + n} \right] \\
\]
Hence the sum of the series\[2 + 5 + 14 + 41 + 122 + ....\]up to n terms is
\[{S_n} = \dfrac{1}{2}\left[ {\dfrac{{3\left( {{3^n} - 1} \right)}}{2} + n} \right]\]
Now for the\[{S_8}\], we get:
\[
{S_n} = \dfrac{1}{2}\left[ {\dfrac{{3\left( {{3^n} - 1} \right)}}{2} + n} \right] \\
{S_8} = \dfrac{1}{2}\left[ {\dfrac{{3\left( {{3^8} - 1} \right)}}{2} + 8} \right] \\
\]
Note: Before finding the sum of the series, it is necessary to study the nature of the series since it makes the process easy and reduces the number of steps to find the answer. Students often make mistakes while approximating the type of series and applying the formula for the sum.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE