
Find the unit vectors orthogonal to both \[\left( {2,3,5} \right)\;\]and \[\left( {2, - 1,4} \right).\]
Answer
577.5k+ views
Hint: A vector which is both perpendiculars to two vectors is denoted by their cross product. And its unit vector can be found by dividing the resultant vector with its magnitude.
Complete step by step answer:
Since, we have two vectors as, \[\left( {2,3,5} \right)\;\]and \[\left( {2, - 1,4} \right),\]by taking \[\bar x = (2,3,5)\]
and \[\bar y = (2, - 1,4)\] we will start the given problem.
Now, any vector which is perpendicular to both of them always has to be in a perpendicular plane of both vectors. So, we now find, \[\bar x \times \bar y\] to get the vector which is perpendicular to them.
\[\bar x \times \bar y = \] \[\left| {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
2&3&5 \\
2&{ - 1}&4
\end{array}} \right|\]
\[ = \hat i(12 + 5) - \hat j(8 - 10) + \hat k( - 2 - 6)\]
\[ = 17\hat i + 2\hat j - 8\hat k\]
\[ = (17,2, - 8)\]
So, now, we do have a point as \[(17,2, - 8)\] which is perpendicular to both \[\left( {2,3,5} \right)\;\]and \[\left( {2, - 1,4} \right).\]
But, now, we are here trying to find a unit vector along that direction, so we need to divide the vector with its magnitude value. That is the value of square root of the sum of the squares of all the components in the result of \[\bar x \times \bar y = \]. Here, 3 components are given as, \[(17,2, - 8)\]. Now, we get,
\[\left| {\bar x \times \bar y} \right| = \sqrt {{{17}^2} + {2^2} + {{( - 8)}^2}} \]
\[ \Rightarrow \left| {\bar x \times \bar y} \right| = \]\[\sqrt {289 + 4 + 64} \]
\[ = \sqrt {357} \]
\[\therefore \;Unit{\text{ }}perpendicular{\text{ }}vector{\text{ }}to\;\bar x\;and\;\]\[\bar y\],\[\dfrac{{\bar x \times \bar y}}{{\left| {\bar x \times \bar y} \right|}}\]
\[ = \dfrac{1}{{\sqrt {357} }}(17,2, - 8).\]
Note: We say that 2 vectors are orthogonal if they are perpendicular to each other. i.e. the dot product of the two vectors is zero. We can verify the resultant with the given vectors. A unit vector is a vector that has a magnitude equal to one.
Complete step by step answer:
Since, we have two vectors as, \[\left( {2,3,5} \right)\;\]and \[\left( {2, - 1,4} \right),\]by taking \[\bar x = (2,3,5)\]
and \[\bar y = (2, - 1,4)\] we will start the given problem.
Now, any vector which is perpendicular to both of them always has to be in a perpendicular plane of both vectors. So, we now find, \[\bar x \times \bar y\] to get the vector which is perpendicular to them.
\[\bar x \times \bar y = \] \[\left| {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
2&3&5 \\
2&{ - 1}&4
\end{array}} \right|\]
\[ = \hat i(12 + 5) - \hat j(8 - 10) + \hat k( - 2 - 6)\]
\[ = 17\hat i + 2\hat j - 8\hat k\]
\[ = (17,2, - 8)\]
So, now, we do have a point as \[(17,2, - 8)\] which is perpendicular to both \[\left( {2,3,5} \right)\;\]and \[\left( {2, - 1,4} \right).\]
But, now, we are here trying to find a unit vector along that direction, so we need to divide the vector with its magnitude value. That is the value of square root of the sum of the squares of all the components in the result of \[\bar x \times \bar y = \]. Here, 3 components are given as, \[(17,2, - 8)\]. Now, we get,
\[\left| {\bar x \times \bar y} \right| = \sqrt {{{17}^2} + {2^2} + {{( - 8)}^2}} \]
\[ \Rightarrow \left| {\bar x \times \bar y} \right| = \]\[\sqrt {289 + 4 + 64} \]
\[ = \sqrt {357} \]
\[\therefore \;Unit{\text{ }}perpendicular{\text{ }}vector{\text{ }}to\;\bar x\;and\;\]\[\bar y\],\[\dfrac{{\bar x \times \bar y}}{{\left| {\bar x \times \bar y} \right|}}\]
\[ = \dfrac{1}{{\sqrt {357} }}(17,2, - 8).\]
Note: We say that 2 vectors are orthogonal if they are perpendicular to each other. i.e. the dot product of the two vectors is zero. We can verify the resultant with the given vectors. A unit vector is a vector that has a magnitude equal to one.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

