Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

Find the value of a and b such thatdx1 + sinx = tan(x+ a) + b.

Answer
VerifiedVerified
539.4k+ views
like imagedislike image
Hint: 11+sinxcannot be integrated directly so convert the function such that we can integrate it. Rationalize the given function 11+sinx before integrating it.

Consider the expression,
dx1 + sinx =tan(x+a)+b…(1.1)
Now,
dx1 + sinx=tan(x+a)+b
Multiply (1sinx) with both numerator and denominator in L.H.S., we get
dx1 + sinx×(1  sinx)(1  sinx)=tan(x+a)+b
We know a2  b2= (a + b)(a  b) so in denominator, we use this formula and we
get
(1  sinx )dx12 sin2x=tan(x+a)+b
We know12 sin2x=cos2x , so the above equation becomes
(1  sinx )dxcos2x =tan(x+a)+b
Separating the denominator, we get
(1cos2x  sinxcos2x )dx=tan(x+a)+b
We know that 1cos2x = sec2x , sinxcosx = tanx and
 1cosx = secx, so the above equation becomes
sec2x dx   sinxcosx×1cosx dx=tan(x+a)+b
sec2x dx   tanx secxdx=tan(x+a)+b
We know, sec2x dx = tanx andtanx secxdx = secx, so above
equation becomes

tanxsecx+C=tan(x+a)+b
Hence, comparing both side we get the value of a & b, so
a=0; b=secx+C
Note: In expressiondx1 + sinx  , it’s important to rationalize so that we can get a function after integration which resembles the R.H.S. Without rationalizing, solving the expression becomes complicated and time consuming.