Answer
Verified
431.7k+ views
Hint: In a right-angled triangle with the length of the side opposite to angle θ as perpendicular (P), base (B) and hypotenuse (H):
$ \sin \theta =\dfrac{P}{H},\cos \theta =\dfrac{B}{H},\tan \theta =\dfrac{P}{B} $
$ {{P}^{2}}+{{B}^{2}}={{H}^{2}} $ (Pythagoras' Theorem)
If a point P is at a distance $ r $ from the origin, then the coordinates of the point are $ \left( r\cos \theta,r\sin \theta \right) $, where $ \theta $ is angle made by line OP with the positive direction of the x-axis.
Find the coordinates of a point which is 1 unit far from the origin and makes an angle of $ 120{}^\circ $ with the x-axis. The x-co-ordinate of the point is the value of $ \cos 120{}^\circ $.
Complete step by step answer:
Let us mark a point P on the graph paper, at distance of 1 unit from the origin, such that OP makes an angle of $ 120{}^\circ $ with the positive direction of the x-axis.
From the definition of trigonometric ratios, we know that the x-co-ordinate of the point P is the value of $ \cos 120{}^\circ $ and the y-coordinate is the value of $ \sin 120{}^\circ $.
The $ \Delta PSO $ in the above diagram is an equilateral triangle.
∴ $ OP=OS=1 $ ... (1)
Also, $ \Delta PTO\cong \Delta PTS $ ... (Using ASA congruence)
∴ $ ST=OT=\dfrac{1}{2}OS $
⇒ $ OT=\dfrac{1}{2}\times 1=\dfrac{1}{2} $ ... [Using equation (1)]
It means that the coordinates of the point T are $ \left( -\dfrac{1}{2},0 \right) $.
Since the point P is on the perpendicular line at point T, its x-co-ordinate must also be the same as that of T, i.e. $ -\dfrac{1}{2} $.
It follows that $ \cos 120{}^\circ =-\dfrac{1}{2} $.
Note: Now that we know the lengths of OP and OT, we can use Pythagoras' theorem and find PT as well, which is the y-coordinate of P, i.e. $ \sin 120{}^\circ $.
Rule of CAST: In the IV, I, II and III quadrants, $ \cos \theta $, All trigonometric ratios, $ \sin \theta $ and $ \tan \theta $ are positive, respectively.
Trigonometric Ratios for Allied Angles:
$ \sin \left( -\theta \right)=-\sin \theta $ $ \cos \left( -\theta \right)=\cos \theta $
$ \sin \left( 2n\pi +\theta \right)=\sin \theta $ $ \cos \left( 2n\pi +\theta \right)=\cos \theta $
$ \sin \left( n\pi +\theta \right)={{\left( -1 \right)}^{n}}\sin \theta $ $ \cos \left( n\pi +\theta \right)={{\left( -1 \right)}^{n}}\cos \theta $
$ \sin \left[ (2n+1)\dfrac{\pi }{2}+\theta \right]={{(-1)}^{n}}\cos \theta $ $ \cos \left[ (2n+1)\dfrac{\pi }{2}+\theta \right]={{(-1)}^{n}}\left( -\sin \theta \right) $
If one trigonometric ratio is known, we can use Pythagoras' Theorem and calculate the values of all other trigonometric ratios.
$ \sin \theta =\dfrac{P}{H},\cos \theta =\dfrac{B}{H},\tan \theta =\dfrac{P}{B} $
$ {{P}^{2}}+{{B}^{2}}={{H}^{2}} $ (Pythagoras' Theorem)
If a point P is at a distance $ r $ from the origin, then the coordinates of the point are $ \left( r\cos \theta,r\sin \theta \right) $, where $ \theta $ is angle made by line OP with the positive direction of the x-axis.
Find the coordinates of a point which is 1 unit far from the origin and makes an angle of $ 120{}^\circ $ with the x-axis. The x-co-ordinate of the point is the value of $ \cos 120{}^\circ $.
Complete step by step answer:
Let us mark a point P on the graph paper, at distance of 1 unit from the origin, such that OP makes an angle of $ 120{}^\circ $ with the positive direction of the x-axis.
From the definition of trigonometric ratios, we know that the x-co-ordinate of the point P is the value of $ \cos 120{}^\circ $ and the y-coordinate is the value of $ \sin 120{}^\circ $.
The $ \Delta PSO $ in the above diagram is an equilateral triangle.
∴ $ OP=OS=1 $ ... (1)
Also, $ \Delta PTO\cong \Delta PTS $ ... (Using ASA congruence)
∴ $ ST=OT=\dfrac{1}{2}OS $
⇒ $ OT=\dfrac{1}{2}\times 1=\dfrac{1}{2} $ ... [Using equation (1)]
It means that the coordinates of the point T are $ \left( -\dfrac{1}{2},0 \right) $.
Since the point P is on the perpendicular line at point T, its x-co-ordinate must also be the same as that of T, i.e. $ -\dfrac{1}{2} $.
It follows that $ \cos 120{}^\circ =-\dfrac{1}{2} $.
Note: Now that we know the lengths of OP and OT, we can use Pythagoras' theorem and find PT as well, which is the y-coordinate of P, i.e. $ \sin 120{}^\circ $.
Rule of CAST: In the IV, I, II and III quadrants, $ \cos \theta $, All trigonometric ratios, $ \sin \theta $ and $ \tan \theta $ are positive, respectively.
Trigonometric Ratios for Allied Angles:
$ \sin \left( -\theta \right)=-\sin \theta $ $ \cos \left( -\theta \right)=\cos \theta $
$ \sin \left( 2n\pi +\theta \right)=\sin \theta $ $ \cos \left( 2n\pi +\theta \right)=\cos \theta $
$ \sin \left( n\pi +\theta \right)={{\left( -1 \right)}^{n}}\sin \theta $ $ \cos \left( n\pi +\theta \right)={{\left( -1 \right)}^{n}}\cos \theta $
$ \sin \left[ (2n+1)\dfrac{\pi }{2}+\theta \right]={{(-1)}^{n}}\cos \theta $ $ \cos \left[ (2n+1)\dfrac{\pi }{2}+\theta \right]={{(-1)}^{n}}\left( -\sin \theta \right) $
If one trigonometric ratio is known, we can use Pythagoras' Theorem and calculate the values of all other trigonometric ratios.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Write the difference between order and molecularity class 11 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What are noble gases Why are they also called inert class 11 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between calcination and roasting class 11 chemistry CBSE