
How do I find the value of \[\cot {330^ \circ }?\]
Answer
551.1k+ views
Hint: Here we will use a method to find the exact value of \[\cot {330^ \circ }\]. Also, putting the value for the term and after some simplification we get the required answer.
Formula used: We will use the following formulas:
\[\tan ( - \theta ) = - \tan \theta \] and \[\cot ( - \theta ) = - \cot \theta \]
And, \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
Also, \[\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\]
And, \[\cot ({360^ \circ } - \theta ) = - \cot \theta \]
Also we will use the following chart of \[All - \sin - \tan - \cos \] :
So, it is clear that in the first quadrant all are positive.
But in the second quadrant \[\sin \] and \[\cos ec\] are positive but all others are negative by sign.
In the third quadrant \[\tan \] and \[\cot \] are positive but all others are negative by sign.
In the fourth quadrant \[\cos \] and \[\sec \] are positive but all others are negative by sign.
Complete step-by-step solution:
Now we can write \[\cot {330^ \circ }\] as \[\cot ({360^ \circ } - {30^ \circ })\].
So, if we try to simulate these values in the quadrants, then we can say that it will come under the \[{4^{th}}\] quadrant.
But in the \[{4^{th}}\] quadrant, only \[\cos \] and \[\sec \] are positive and all other parameters are negative.
So, the value \[\cot \theta \] will be negative in \[{4^{th}}\] quadrant.
So, we can say that \[\cot ({360^ \circ } - {30^ \circ }) = - \cot {30^ \circ }\].
But the value of \[\cot {30^ \circ }\] is \[\sqrt 3 \].
So, the value of \[\cot {30^ \circ } = - \sqrt 3 \].
So, we can say that \[\cot {330^ \circ } = \cot ({360^ \circ } - {30^ \circ }) = - \cot {30^ \circ } = - \sqrt 3 \].
\[\therefore \] The value \[\cot {330^ \circ }\] is \[ - \sqrt 3 \].
Note: To find the value of \[\cot \theta \], we can use the following formula also:
\[\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\].
So, we can write \[\cot {30^ \circ }\] as \[\dfrac{{\cos {{30}^ \circ }}}{{\sin {{30}^ \circ }}}\].
But we know the value of \[\cos {30^ \circ }\]is \[\dfrac{{\sqrt 3 }}{2}\] and the value of \[\sin {30^ \circ }\] is \[\dfrac{1}{2}\].
So, the value of \[\cot {30^ \circ }\] can be written as:
\[\cot {30^ \circ } = \dfrac{{\cos {{30}^ \circ }}}{{\sin {{30}^ \circ }}} = \dfrac{{\dfrac{{\sqrt 3 }}{2}}}{{\dfrac{1}{2}}}\].
By solving it, we can state that:
\[\cot {30^ \circ } = \dfrac{{\sqrt 3 }}{2} \times \dfrac{2}{1} = \sqrt 3 \].
So, we can write it again as:
\[\cot {330^ \circ } = \cot ({360^ \circ } - {30^ \circ }) = - \cot {30^ \circ } = - \sqrt 3 \].
Formula used: We will use the following formulas:
\[\tan ( - \theta ) = - \tan \theta \] and \[\cot ( - \theta ) = - \cot \theta \]
And, \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
Also, \[\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\]
And, \[\cot ({360^ \circ } - \theta ) = - \cot \theta \]
Also we will use the following chart of \[All - \sin - \tan - \cos \] :
So, it is clear that in the first quadrant all are positive.
But in the second quadrant \[\sin \] and \[\cos ec\] are positive but all others are negative by sign.
In the third quadrant \[\tan \] and \[\cot \] are positive but all others are negative by sign.
In the fourth quadrant \[\cos \] and \[\sec \] are positive but all others are negative by sign.
Complete step-by-step solution:
Now we can write \[\cot {330^ \circ }\] as \[\cot ({360^ \circ } - {30^ \circ })\].
So, if we try to simulate these values in the quadrants, then we can say that it will come under the \[{4^{th}}\] quadrant.
But in the \[{4^{th}}\] quadrant, only \[\cos \] and \[\sec \] are positive and all other parameters are negative.
So, the value \[\cot \theta \] will be negative in \[{4^{th}}\] quadrant.
So, we can say that \[\cot ({360^ \circ } - {30^ \circ }) = - \cot {30^ \circ }\].
But the value of \[\cot {30^ \circ }\] is \[\sqrt 3 \].
So, the value of \[\cot {30^ \circ } = - \sqrt 3 \].
So, we can say that \[\cot {330^ \circ } = \cot ({360^ \circ } - {30^ \circ }) = - \cot {30^ \circ } = - \sqrt 3 \].
\[\therefore \] The value \[\cot {330^ \circ }\] is \[ - \sqrt 3 \].
Note: To find the value of \[\cot \theta \], we can use the following formula also:
\[\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\].
So, we can write \[\cot {30^ \circ }\] as \[\dfrac{{\cos {{30}^ \circ }}}{{\sin {{30}^ \circ }}}\].
But we know the value of \[\cos {30^ \circ }\]is \[\dfrac{{\sqrt 3 }}{2}\] and the value of \[\sin {30^ \circ }\] is \[\dfrac{1}{2}\].
So, the value of \[\cot {30^ \circ }\] can be written as:
\[\cot {30^ \circ } = \dfrac{{\cos {{30}^ \circ }}}{{\sin {{30}^ \circ }}} = \dfrac{{\dfrac{{\sqrt 3 }}{2}}}{{\dfrac{1}{2}}}\].
By solving it, we can state that:
\[\cot {30^ \circ } = \dfrac{{\sqrt 3 }}{2} \times \dfrac{2}{1} = \sqrt 3 \].
So, we can write it again as:
\[\cot {330^ \circ } = \cot ({360^ \circ } - {30^ \circ }) = - \cot {30^ \circ } = - \sqrt 3 \].
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

