Answer
Verified
429k+ views
Hint: Trigonometric functions are those functions that tell us the relation between the three sides of a right-angled triangle. Sine, cosine, tangent, cosecant, secant and cotangent are the six types of trigonometric functions; sine, cosine and tangent are the main functions while cosecant, secant and cotangent are the reciprocal of sine, cosine and tangent respectively. Thus the given function can be converted in the form of tangent easily. First we find the value of tangent function then taking the reciprocal of tangent we get the cotangent value. Also we need to know the supplementary angle of sine.
Complete step-by-step solution:
Given, \[\cot \left( {\dfrac{\pi }{{12}}} \right)\].
We know that the
\[\cot \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{1}{{\tan \left( {\dfrac{\pi }{{12}}} \right)}}\].
Now we find the value of \[\tan \left( {\dfrac{\pi }{{12}}} \right)\].
We can express \[\dfrac{\pi }{{12}} = \dfrac{\pi }{3} - \dfrac{\pi }{4}\]
Then we have
\[
\Rightarrow \tan \left( {\dfrac{\pi }{{12}}} \right) = \tan \left( {\dfrac{\pi }{3} - \dfrac{\pi }{4}} \right) \\
\Rightarrow \tan \left( {\dfrac{\pi }{3} - \dfrac{\pi }{4}} \right) \\
\]
We know the difference formula for tangent that is \[\tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A.\tan B}}\]. Here \[A = \dfrac{\pi }{3}\]and\[B = \dfrac{\pi }{4}\].
\[ \Rightarrow \tan \left( {\dfrac{\pi }{3} - \dfrac{\pi }{4}} \right) = \dfrac{{\tan \dfrac{\pi }{3} - \tan \dfrac{\pi }{4}}}{{1 + \tan \dfrac{\pi }{3}.\tan \dfrac{\pi }{4}}}\]
\[ \Rightarrow \tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\tan \dfrac{\pi }{3} - \tan \dfrac{\pi }{4}}}{{1 + \tan \dfrac{\pi }{3}.\tan \dfrac{\pi }{4}}}\]
We know \[\tan \dfrac{\pi }{3} = \sqrt 3 \] and \[\tan \dfrac{\pi }{4} = 1\]. Substituting we have,
\[ \Rightarrow \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 .1}}\]
\[ \Rightarrow \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 }}\]
To simplify further we rationalize this
\[ \Rightarrow \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 }} \times \dfrac{{1 - \sqrt 3 }}{{1 - \sqrt 3 }}\]
\[ \Rightarrow \dfrac{{\left( {\sqrt 3 - 1} \right)\left( {1 - \sqrt 3 } \right)}}{{\left( {1 + \sqrt 3 } \right)\left( {1 - \sqrt 3 } \right)}}\]
Denominator is of the form \[{a^2} - {b^2} = (a + b)(a - b)\],
\[ \Rightarrow \dfrac{{\sqrt 3 \left( {1 - \sqrt 3 } \right) - 1\left( {1 - \sqrt 3 } \right)}}{{\left( {{1^2} - {{\left( {\sqrt 3 } \right)}^2}} \right)}}\]
\[ \Rightarrow \dfrac{{\sqrt 3 - {{\left( {\sqrt 3 } \right)}^2} - 1 + \sqrt 3 }}{{\left( {{1^2} - {{\left( {\sqrt 3 } \right)}^2}} \right)}}\]
Square and square root will cancel out,
\[ \Rightarrow \dfrac{{\sqrt 3 - 3 - 1 + \sqrt 3 }}{{\left( {1 - 3} \right)}}\]
\[ \Rightarrow \dfrac{{2\sqrt 3 - 4}}{{ - 2}}\]
Taking 2 common we have,
\[ \Rightarrow \dfrac{{2\left( {\sqrt 3 - 2} \right)}}{{ - 2}}\]
\[ \Rightarrow - \left( {\sqrt 3 - 2} \right)\]
\[ \Rightarrow 2 - \sqrt 3 \]
Thus we have \[\tan \left( {\dfrac{\pi }{{12}}} \right) = 2 - \sqrt 3 \].
Now we have,
\[\cot \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{1}{{\tan \left( {\dfrac{\pi }{{12}}} \right)}}\]
\[ \Rightarrow \cot \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{1}{{2 - \sqrt 3 }}\].
Note: Remember A graph is divided into four quadrants, all the trigonometric functions are positive in the first quadrant, all the trigonometric functions are negative in the second quadrant except sine and cosine functions, tangent and cotangent are positive in the third quadrant while all others are negative and similarly all the trigonometric functions are negative in the fourth quadrant except cosine and secant.
Complete step-by-step solution:
Given, \[\cot \left( {\dfrac{\pi }{{12}}} \right)\].
We know that the
\[\cot \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{1}{{\tan \left( {\dfrac{\pi }{{12}}} \right)}}\].
Now we find the value of \[\tan \left( {\dfrac{\pi }{{12}}} \right)\].
We can express \[\dfrac{\pi }{{12}} = \dfrac{\pi }{3} - \dfrac{\pi }{4}\]
Then we have
\[
\Rightarrow \tan \left( {\dfrac{\pi }{{12}}} \right) = \tan \left( {\dfrac{\pi }{3} - \dfrac{\pi }{4}} \right) \\
\Rightarrow \tan \left( {\dfrac{\pi }{3} - \dfrac{\pi }{4}} \right) \\
\]
We know the difference formula for tangent that is \[\tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A.\tan B}}\]. Here \[A = \dfrac{\pi }{3}\]and\[B = \dfrac{\pi }{4}\].
\[ \Rightarrow \tan \left( {\dfrac{\pi }{3} - \dfrac{\pi }{4}} \right) = \dfrac{{\tan \dfrac{\pi }{3} - \tan \dfrac{\pi }{4}}}{{1 + \tan \dfrac{\pi }{3}.\tan \dfrac{\pi }{4}}}\]
\[ \Rightarrow \tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\tan \dfrac{\pi }{3} - \tan \dfrac{\pi }{4}}}{{1 + \tan \dfrac{\pi }{3}.\tan \dfrac{\pi }{4}}}\]
We know \[\tan \dfrac{\pi }{3} = \sqrt 3 \] and \[\tan \dfrac{\pi }{4} = 1\]. Substituting we have,
\[ \Rightarrow \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 .1}}\]
\[ \Rightarrow \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 }}\]
To simplify further we rationalize this
\[ \Rightarrow \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 }} \times \dfrac{{1 - \sqrt 3 }}{{1 - \sqrt 3 }}\]
\[ \Rightarrow \dfrac{{\left( {\sqrt 3 - 1} \right)\left( {1 - \sqrt 3 } \right)}}{{\left( {1 + \sqrt 3 } \right)\left( {1 - \sqrt 3 } \right)}}\]
Denominator is of the form \[{a^2} - {b^2} = (a + b)(a - b)\],
\[ \Rightarrow \dfrac{{\sqrt 3 \left( {1 - \sqrt 3 } \right) - 1\left( {1 - \sqrt 3 } \right)}}{{\left( {{1^2} - {{\left( {\sqrt 3 } \right)}^2}} \right)}}\]
\[ \Rightarrow \dfrac{{\sqrt 3 - {{\left( {\sqrt 3 } \right)}^2} - 1 + \sqrt 3 }}{{\left( {{1^2} - {{\left( {\sqrt 3 } \right)}^2}} \right)}}\]
Square and square root will cancel out,
\[ \Rightarrow \dfrac{{\sqrt 3 - 3 - 1 + \sqrt 3 }}{{\left( {1 - 3} \right)}}\]
\[ \Rightarrow \dfrac{{2\sqrt 3 - 4}}{{ - 2}}\]
Taking 2 common we have,
\[ \Rightarrow \dfrac{{2\left( {\sqrt 3 - 2} \right)}}{{ - 2}}\]
\[ \Rightarrow - \left( {\sqrt 3 - 2} \right)\]
\[ \Rightarrow 2 - \sqrt 3 \]
Thus we have \[\tan \left( {\dfrac{\pi }{{12}}} \right) = 2 - \sqrt 3 \].
Now we have,
\[\cot \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{1}{{\tan \left( {\dfrac{\pi }{{12}}} \right)}}\]
\[ \Rightarrow \cot \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{1}{{2 - \sqrt 3 }}\].
Note: Remember A graph is divided into four quadrants, all the trigonometric functions are positive in the first quadrant, all the trigonometric functions are negative in the second quadrant except sine and cosine functions, tangent and cotangent are positive in the third quadrant while all others are negative and similarly all the trigonometric functions are negative in the fourth quadrant except cosine and secant.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE