Answer
Verified
497.4k+ views
Hint: Separate the integrals into two terms separated by an addition. Simplify the first term using integration by parts and some terms will get cancelled to give the final answer.
Complete step-by-step answer:
The given integral has two terms separated by an addition. Let us make two integrals based on the rule of addition of integrals. Hence, we have:
\[I = \int {\dfrac{{{e^x}}}{x}(x\log x + 1)dx} \]
\[I = \int {{e^x}\log xdx + \int {\dfrac{{{e^x}}}{x}dx} } ...........(1)\]
Now, equation (1) has two parts, let's solve the first term to simplify the expression. Assign the first term to I’.
\[I' = \int {{e^x}\log xdx} \]
Let us use integration by parts to solve I’.
The formula for integration by parts is as follows:
\[\int {udv = uv - \int {vdu} } ..........(2)\]
We have, \[u = \log x\] and \[dv = {e^x}dx\]. Hence, we find du and v as follows:
Find du by differentiating u as follows:
\[du = \dfrac{1}{x}dx.........(3)\]
Find v by integrating dv. We know that integration of \[{e^x}\] is \[{e^x}\] itself.
\[\int {dv} = \int {{e^x}dx} \]
\[v = {e^x}............(4)\]
Substituting equation (3) and equation (4) in equation (5), we have:
\[\int {{e^x}\log xdx = \log \left| x \right|{e^x} - \int {\dfrac{{{e^x}}}{x}dx} } ..........(5)\]
We now substitute equation (5) back in equation (1) to get:
\[I = \log \left| x \right|{e^x} - \int {\dfrac{{{e^x}}}{x}dx} + \int {\dfrac{{{e^x}}}{x}dx} \]
We can observe that the second and the third term cancel each other. Also, we need to add the constant of integration because the integral can differ by a constant. Hence, the final expression is as follows:
\[I = {e^x}\log \left| x \right| + C\]
Hence, the correct answer is \[{e^x}\log \left| x \right| + C\].
Therefore, the correct answer is option (c).
Note: You must be careful when choosing u and v for integration by parts. A logarithmic function should be given a higher preference for u than the exponential function.
Complete step-by-step answer:
The given integral has two terms separated by an addition. Let us make two integrals based on the rule of addition of integrals. Hence, we have:
\[I = \int {\dfrac{{{e^x}}}{x}(x\log x + 1)dx} \]
\[I = \int {{e^x}\log xdx + \int {\dfrac{{{e^x}}}{x}dx} } ...........(1)\]
Now, equation (1) has two parts, let's solve the first term to simplify the expression. Assign the first term to I’.
\[I' = \int {{e^x}\log xdx} \]
Let us use integration by parts to solve I’.
The formula for integration by parts is as follows:
\[\int {udv = uv - \int {vdu} } ..........(2)\]
We have, \[u = \log x\] and \[dv = {e^x}dx\]. Hence, we find du and v as follows:
Find du by differentiating u as follows:
\[du = \dfrac{1}{x}dx.........(3)\]
Find v by integrating dv. We know that integration of \[{e^x}\] is \[{e^x}\] itself.
\[\int {dv} = \int {{e^x}dx} \]
\[v = {e^x}............(4)\]
Substituting equation (3) and equation (4) in equation (5), we have:
\[\int {{e^x}\log xdx = \log \left| x \right|{e^x} - \int {\dfrac{{{e^x}}}{x}dx} } ..........(5)\]
We now substitute equation (5) back in equation (1) to get:
\[I = \log \left| x \right|{e^x} - \int {\dfrac{{{e^x}}}{x}dx} + \int {\dfrac{{{e^x}}}{x}dx} \]
We can observe that the second and the third term cancel each other. Also, we need to add the constant of integration because the integral can differ by a constant. Hence, the final expression is as follows:
\[I = {e^x}\log \left| x \right| + C\]
Hence, the correct answer is \[{e^x}\log \left| x \right| + C\].
Therefore, the correct answer is option (c).
Note: You must be careful when choosing u and v for integration by parts. A logarithmic function should be given a higher preference for u than the exponential function.
Recently Updated Pages
A particle is undergoing a horizontal circle of radius class 11 physics CBSE
A particle is thrown vertically upwards with a velocity class 11 physics CBSE
A particle is rotated in a vertical circle by connecting class 11 physics CBSE
A particle is projected with a velocity v such that class 11 physics CBSE
A particle is projected with a velocity u making an class 11 physics CBSE
A particle is projected vertically upwards and it reaches class 11 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE