Find the value of k so that the following equations may represent pairs of straight lines:
$kxy-8x+9y-12=0$
Answer
Verified
511.8k+ views
Hint: General equation of conic i.e. $a{{x}^{2}}+b{{y}^{2}}+2hxy+2gx+2fy+c=0$ will represent pairs of straight lines if
$\begin{align}
& \left| \begin{matrix}
a & h & g \\
h & b & f \\
g & f & c \\
\end{matrix} \right|=0 \\
& or \\
& abc+2fgh-a{{f}^{2}}-b{{g}^{2}}-c{{h}^{2}}=0 \\
\end{align}$
We have equation given;
$kxy-8x+9y-12=0$……………….(1)
Now, as we know that general conic equation is given as;
$a{{x}^{2}}+b{{y}^{2}}+2hxy+2gx+2fy+c=0$…………(2)
Above equation of conic will represent a pair of straight lines, circle, ellipse, parabola etc. with some condition among the coefficients of the given equation (2).
We know that conic will represent pair of straight lines if;
$\left| \begin{matrix}
a & h & g \\
h & b & f \\
g & f & c \\
\end{matrix} \right|=0$
On expanding the above determinant, we get;
$abc+2fgh-a{{f}^{2}}-b{{g}^{2}}-c{{h}^{2}}=0$…………………..(3)
Now, comparing equation given or equation (1) with equation (2), we get;
$\begin{align}
& a=0 \\
& b=0 \\
& 2h=k\text{ or }h=\dfrac{k}{2} \\
\end{align}$
$\begin{align}
& 2g=-8\text{ or }g=-4 \\
& 2f=9\text{ or }f=\dfrac{9}{2} \\
\end{align}$
$And\text{ }c=-12$
Now, we have values of all the coefficients required for equation (3). Putting values in it, we get;
$\begin{align}
& abc+2fgh-a{{f}^{2}}-b{{g}^{2}}-c{{h}^{2}}=0 \\
& \left( 0 \right)\left( 0 \right)\left( -12 \right)+2\left( \dfrac{9}{2} \right)\left( -4 \right)\left( \dfrac{k}{2} \right)-\left( 0 \right){{\left( \dfrac{9}{2} \right)}^{2}}-\left( 0 \right){{\left( -4 \right)}^{2}}-\left( -12 \right){{\left( \dfrac{k}{2} \right)}^{2}}=0 \\
\end{align}$
On simplifying the above relation, we get;
$\begin{align}
& 0-18k-0-0+3{{k}^{2}}=0 \\
& 3{{k}^{2}}-18k=0 \\
\end{align}$
Taking out ‘k’ common from the above equation, we get;
$\left( k \right)\left( 3k-18 \right)=0$
Therefore,
k = 0 and 3k = 18 or k = 6
Now, we have two values of k, i.e.
k = 0 and k = 6.
Putting k = 0, in equation one, we get equation $-8x+9y-12=0$, which represents one straight in coordinate plane.
Hence, k = 0 is not possible for the representation of a pair of straight lines.
Hence, k = 6 is the answer which gives pairs of straight line as;
$6xy-8x+9y-12=0$
Note: One can go wrong while comparing the given equation with general conic $a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0$ to get the coefficients. So need to be very careful while substituting the values in $abc+2fgh-a{{f}^{2}}-b{{g}^{2}}-c{{h}^{2}}=0$.
One need to verify k = 0 by putting in the given equation for checking the given equation is of the pairs of straight lines.
$\begin{align}
& \left| \begin{matrix}
a & h & g \\
h & b & f \\
g & f & c \\
\end{matrix} \right|=0 \\
& or \\
& abc+2fgh-a{{f}^{2}}-b{{g}^{2}}-c{{h}^{2}}=0 \\
\end{align}$
We have equation given;
$kxy-8x+9y-12=0$……………….(1)
Now, as we know that general conic equation is given as;
$a{{x}^{2}}+b{{y}^{2}}+2hxy+2gx+2fy+c=0$…………(2)
Above equation of conic will represent a pair of straight lines, circle, ellipse, parabola etc. with some condition among the coefficients of the given equation (2).
We know that conic will represent pair of straight lines if;
$\left| \begin{matrix}
a & h & g \\
h & b & f \\
g & f & c \\
\end{matrix} \right|=0$
On expanding the above determinant, we get;
$abc+2fgh-a{{f}^{2}}-b{{g}^{2}}-c{{h}^{2}}=0$…………………..(3)
Now, comparing equation given or equation (1) with equation (2), we get;
$\begin{align}
& a=0 \\
& b=0 \\
& 2h=k\text{ or }h=\dfrac{k}{2} \\
\end{align}$
$\begin{align}
& 2g=-8\text{ or }g=-4 \\
& 2f=9\text{ or }f=\dfrac{9}{2} \\
\end{align}$
$And\text{ }c=-12$
Now, we have values of all the coefficients required for equation (3). Putting values in it, we get;
$\begin{align}
& abc+2fgh-a{{f}^{2}}-b{{g}^{2}}-c{{h}^{2}}=0 \\
& \left( 0 \right)\left( 0 \right)\left( -12 \right)+2\left( \dfrac{9}{2} \right)\left( -4 \right)\left( \dfrac{k}{2} \right)-\left( 0 \right){{\left( \dfrac{9}{2} \right)}^{2}}-\left( 0 \right){{\left( -4 \right)}^{2}}-\left( -12 \right){{\left( \dfrac{k}{2} \right)}^{2}}=0 \\
\end{align}$
On simplifying the above relation, we get;
$\begin{align}
& 0-18k-0-0+3{{k}^{2}}=0 \\
& 3{{k}^{2}}-18k=0 \\
\end{align}$
Taking out ‘k’ common from the above equation, we get;
$\left( k \right)\left( 3k-18 \right)=0$
Therefore,
k = 0 and 3k = 18 or k = 6
Now, we have two values of k, i.e.
k = 0 and k = 6.
Putting k = 0, in equation one, we get equation $-8x+9y-12=0$, which represents one straight in coordinate plane.
Hence, k = 0 is not possible for the representation of a pair of straight lines.
Hence, k = 6 is the answer which gives pairs of straight line as;
$6xy-8x+9y-12=0$
Note: One can go wrong while comparing the given equation with general conic $a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0$ to get the coefficients. So need to be very careful while substituting the values in $abc+2fgh-a{{f}^{2}}-b{{g}^{2}}-c{{h}^{2}}=0$.
One need to verify k = 0 by putting in the given equation for checking the given equation is of the pairs of straight lines.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE