Answer
Verified
469.8k+ views
Hint: A permutation is defined as an arrangement in a definite order of a number of objects taken some or all at a time. The convenient expression to denote permutation is defined as
The permutation formula is given by,
\[^n\Pr = \dfrac{{n!}}{{\left( {n - r} \right)!}};0 \leqslant r \leqslant n\]
Where the symbol denotes the factorial which means that the product of all the integer less than or equal to n but it should be greater than or equal to 1.
Combination- the combination is a selection of a part of a set of objects or selection of all objects when the order does not matter. Therefore, the number of combinations of n objects taken r at a time and the combination formula is given by,
\[^nCr = \dfrac{{n(n - 1)(n - 2).....(n - r + 1)}}{{r!}}\]
\[ = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
\[^nCr = \dfrac{{^n\Pr }}{{r!}}\]
Therefore,
Complete step by step answer:
Given, \[^n\Pr = \dfrac{{n!}}{{\left( {n - r} \right)!}}\]
Which is equal to \[720\]
\[\dfrac{{n!}}{{\left( {n - r} \right)!}} = 720\]
As we know the relation between permutation and combination
\[^n\Pr = r{!^n}Cr\]
\[\dfrac{{^n\Pr }}{{^nCr}} = r!.......1.\]
Also given in the question \[^nCr = 120\]
Putting the value of \[^n\Pr \] and \[^nCr\] in equation 1.
\[\dfrac{{720}}{{120}} = r!\]
\[r! = 6\]
\[r! = 3 \times 2 \times 1\]
\[r = 3\]
Now, \[^n\operatorname{P} 3 = 720\]
We can write this
\[n(n - 1)(n - 2) = 720\]
\[n(n - 1)(n - 2) = 10 \times 9 \times 8\]
From this we get
\[n = 10\]
Hence the value of \[n\] and \[r\] are \[10\] and \[3\] respectively.
Note: The relation between permutation and combination-
\[^n\Pr { = ^n}Cr.r!\] if
\[0 < r \leqslant n\]
\[^nCr{ + ^n}Cr - 1{ = ^{n + 1}}Cr\]
The fundamental principle of counting
Multiplication principal
Suppose an operation
The fundamental principle of counting –
Multiplication principle: suppose an operation A can be performed in m ways and associated with each way of performing another operation B can be performed in n ways, then the total number of performances of two operations in the given order is \[m \times n\] ways. This can be extended to any finite number of operations.
Addition principle: if an operation A can be performed in m ways and another operation S, which is independent of A, can be performed in \[m + n\] ways. This can be extended to any finite number of exclusive events.
The permutation formula is given by,
\[^n\Pr = \dfrac{{n!}}{{\left( {n - r} \right)!}};0 \leqslant r \leqslant n\]
Where the symbol denotes the factorial which means that the product of all the integer less than or equal to n but it should be greater than or equal to 1.
Combination- the combination is a selection of a part of a set of objects or selection of all objects when the order does not matter. Therefore, the number of combinations of n objects taken r at a time and the combination formula is given by,
\[^nCr = \dfrac{{n(n - 1)(n - 2).....(n - r + 1)}}{{r!}}\]
\[ = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
\[^nCr = \dfrac{{^n\Pr }}{{r!}}\]
Therefore,
Complete step by step answer:
Given, \[^n\Pr = \dfrac{{n!}}{{\left( {n - r} \right)!}}\]
Which is equal to \[720\]
\[\dfrac{{n!}}{{\left( {n - r} \right)!}} = 720\]
As we know the relation between permutation and combination
\[^n\Pr = r{!^n}Cr\]
\[\dfrac{{^n\Pr }}{{^nCr}} = r!.......1.\]
Also given in the question \[^nCr = 120\]
Putting the value of \[^n\Pr \] and \[^nCr\] in equation 1.
\[\dfrac{{720}}{{120}} = r!\]
\[r! = 6\]
\[r! = 3 \times 2 \times 1\]
\[r = 3\]
Now, \[^n\operatorname{P} 3 = 720\]
We can write this
\[n(n - 1)(n - 2) = 720\]
\[n(n - 1)(n - 2) = 10 \times 9 \times 8\]
From this we get
\[n = 10\]
Hence the value of \[n\] and \[r\] are \[10\] and \[3\] respectively.
Note: The relation between permutation and combination-
\[^n\Pr { = ^n}Cr.r!\] if
\[0 < r \leqslant n\]
\[^nCr{ + ^n}Cr - 1{ = ^{n + 1}}Cr\]
The fundamental principle of counting
Multiplication principal
Suppose an operation
The fundamental principle of counting –
Multiplication principle: suppose an operation A can be performed in m ways and associated with each way of performing another operation B can be performed in n ways, then the total number of performances of two operations in the given order is \[m \times n\] ways. This can be extended to any finite number of operations.
Addition principle: if an operation A can be performed in m ways and another operation S, which is independent of A, can be performed in \[m + n\] ways. This can be extended to any finite number of exclusive events.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers