Answer
Verified
452.4k+ views
Hint:Use the fact that the range of the function ${{\sec }^{-1}}x$ is $\left[ 0,\pi \right]-\left\{ \dfrac{\pi }{2} \right\}$. Put $y={{\sec }^{-1}}\left( \sec \dfrac{8\pi }{5} \right)$ and use the fact that if $y={{\sec }^{-1}}x$, then $x=\sec y$. Use the fact that if $\cos x=\cos y$, then $x=2n\pi \pm y,n\in \mathbb{Z}$. Hence find the value of y and hence find the value of ${{\sec }^{-1}}\sec \dfrac{8\pi }{5}$
Complete step by step answer:
Before solving the above question, we must understand how ${{\sec }^{-1}}x$ is defined even when $\sec x$ is not one-one.
We know that sec x is a periodic function.
Let us draw the graph of sec x
As is evident from the graph secx is a repeated chunk of the graph of secx within the interval $\left[ A,B \right]-\left\{ \dfrac{\pi }{2},\dfrac{3\pi }{2} \right\}$ , and it attains all its possible values in the interval $\left[ A,C \right]-\left\{ \dfrac{\pi }{2} \right\}$.
Here $A=0,B=2\pi $ and $C=\pi $
Hence if we consider secx in the interval \[\left[ A,C \right]-\left\{ \dfrac{\pi }{2} \right\}\], we will lose no value attained by secx, and at the same time, secx will be one-one and onto.
Hence ${{\sec }^{-1}}x$ is defined over the Domain $\left( -\infty ,-1 \right]\bigcup \left[ 1,\infty \right)$, with codomain $\left[ 0,\pi \right]-\left\{ \dfrac{\pi }{2} \right\}$ as in the Domain $\left[ 0,\pi \right]-\left\{ \dfrac{\pi }{2} \right\}$, secx is one-one and $\text{Range}\left( \sec x \right)=\left( -\infty ,-1 \right]\bigcup \left[ 1,\infty \right)$.
Now since ${{\sec }^{-1}}x$ is the inverse of secx it satisfies the fact that if $y={{\sec }^{-1}}x$, then $\sec y=x$.
So let $y={{\sec }^{-1}}\sec \dfrac{8\pi }{5}$
Hence we have $\sec y=\sec \dfrac{8\pi }{5},y\in \left[ 0,\pi \right]-\left\{ \dfrac{\pi }{2} \right\}$
Taking reciprocals on both sides, we get
$\dfrac{1}{\sec y}=\dfrac{1}{\sec \dfrac{8\pi }{5}}$
We know that $\cos \theta =\dfrac{1}{\sec \theta }$.
Hence, we have
$\cos y=\cos \dfrac{8\pi }{5}$
We know that if $\cos x=\cos y$, then
Hence, we have
$y=2n\pi \pm \dfrac{8\pi }{5}$
Since $y\in \left[ 0,\pi \right]-\left\{ \dfrac{\pi }{2} \right\}$, we put n = 1 and take the negative sign.
Hence, we have
$y=2\pi -\dfrac{8\pi }{5}=\dfrac{2\pi }{5}$
Hence, we have
${{\sec }^{-1}}\sec \dfrac{8\pi }{5}=\dfrac{2\pi }{5}$
Hence option [a] is correct.
Note:
Alternative solution:
We know that ${{\sec }^{-1}}x={{\cos }^{-1}}\dfrac{1}{x}$. Hence, we have
${{\sec }^{-1}}\sec \dfrac{8\pi }{5}={{\cos }^{-1}}\cos \dfrac{8\pi }{5}$
We know that
${{\cos }^{-1}}\cos x=\left\{ \begin{matrix}
\vdots \\
2\pi +x,x\in \left[ -\pi ,0 \right] \\
x,x\in \left[ 0,\pi \right] \\
2\pi -x,x\in \left[ \pi ,2\pi \right] \\
\vdots \\
\end{matrix} \right.$
Since $\dfrac{8\pi }{5}\in \left[ \pi ,2\pi \right]$, we have
${{\cos }^{-1}}\cos \dfrac{8\pi }{5}=2\pi -\dfrac{8\pi }{5}=\dfrac{2\pi }{5}$
Hence option [a] is correct.
Complete step by step answer:
Before solving the above question, we must understand how ${{\sec }^{-1}}x$ is defined even when $\sec x$ is not one-one.
We know that sec x is a periodic function.
Let us draw the graph of sec x
As is evident from the graph secx is a repeated chunk of the graph of secx within the interval $\left[ A,B \right]-\left\{ \dfrac{\pi }{2},\dfrac{3\pi }{2} \right\}$ , and it attains all its possible values in the interval $\left[ A,C \right]-\left\{ \dfrac{\pi }{2} \right\}$.
Here $A=0,B=2\pi $ and $C=\pi $
Hence if we consider secx in the interval \[\left[ A,C \right]-\left\{ \dfrac{\pi }{2} \right\}\], we will lose no value attained by secx, and at the same time, secx will be one-one and onto.
Hence ${{\sec }^{-1}}x$ is defined over the Domain $\left( -\infty ,-1 \right]\bigcup \left[ 1,\infty \right)$, with codomain $\left[ 0,\pi \right]-\left\{ \dfrac{\pi }{2} \right\}$ as in the Domain $\left[ 0,\pi \right]-\left\{ \dfrac{\pi }{2} \right\}$, secx is one-one and $\text{Range}\left( \sec x \right)=\left( -\infty ,-1 \right]\bigcup \left[ 1,\infty \right)$.
Now since ${{\sec }^{-1}}x$ is the inverse of secx it satisfies the fact that if $y={{\sec }^{-1}}x$, then $\sec y=x$.
So let $y={{\sec }^{-1}}\sec \dfrac{8\pi }{5}$
Hence we have $\sec y=\sec \dfrac{8\pi }{5},y\in \left[ 0,\pi \right]-\left\{ \dfrac{\pi }{2} \right\}$
Taking reciprocals on both sides, we get
$\dfrac{1}{\sec y}=\dfrac{1}{\sec \dfrac{8\pi }{5}}$
We know that $\cos \theta =\dfrac{1}{\sec \theta }$.
Hence, we have
$\cos y=\cos \dfrac{8\pi }{5}$
We know that if $\cos x=\cos y$, then
Hence, we have
$y=2n\pi \pm \dfrac{8\pi }{5}$
Since $y\in \left[ 0,\pi \right]-\left\{ \dfrac{\pi }{2} \right\}$, we put n = 1 and take the negative sign.
Hence, we have
$y=2\pi -\dfrac{8\pi }{5}=\dfrac{2\pi }{5}$
Hence, we have
${{\sec }^{-1}}\sec \dfrac{8\pi }{5}=\dfrac{2\pi }{5}$
Hence option [a] is correct.
Note:
Alternative solution:
We know that ${{\sec }^{-1}}x={{\cos }^{-1}}\dfrac{1}{x}$. Hence, we have
${{\sec }^{-1}}\sec \dfrac{8\pi }{5}={{\cos }^{-1}}\cos \dfrac{8\pi }{5}$
We know that
${{\cos }^{-1}}\cos x=\left\{ \begin{matrix}
\vdots \\
2\pi +x,x\in \left[ -\pi ,0 \right] \\
x,x\in \left[ 0,\pi \right] \\
2\pi -x,x\in \left[ \pi ,2\pi \right] \\
\vdots \\
\end{matrix} \right.$
Since $\dfrac{8\pi }{5}\in \left[ \pi ,2\pi \right]$, we have
${{\cos }^{-1}}\cos \dfrac{8\pi }{5}=2\pi -\dfrac{8\pi }{5}=\dfrac{2\pi }{5}$
Hence option [a] is correct.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE