
Find the value of \[{\sec ^2}\theta - {\tan ^2}\theta \].
Answer
504k+ views
Hint: In the given question, we have to solve the trigonometric equation. We will use the trigonometric identities to solve the equation and arrive at the answer. We should know that \[{\sec ^2}\theta = \dfrac{1}{{{{\cos }^2}\theta }}\]and \[{\tan ^2}\theta = \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }}\].
Complete step by step solution:
Trigonometry is one of the branches of mathematics that uses trigonometric ratios to find the angles and missing sides of a triangle. The trigonometric functions are the trigonometric ratios of a triangle. The trigonometric functions are sine, cosine, sectant, cosecant, tangent and cotangent.
The Trigonometric formulas or Identities are the equations which are valid in the case of Right-Angled Triangles. They are also called Pythagorean Identities.
We can solve the question as follows-
We know that \[\sec \theta = \dfrac{1}{{\cos \theta }}\]so we can say that \[{\sec ^2}\theta = \dfrac{1}{{{{\cos }^2}\theta }}\].
Similarly, \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]so we can get \[{\tan ^2}\theta = \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }}\].
Applying the above identities, we get,
\[ = \dfrac{1}{{{{\cos }^2}\theta }} - \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }}\]
We have common denominator, so we can get,
\[ = \dfrac{{1 - {{\sin }^2}\theta }}{{{{\cos }^2}\theta }}\]
Now since \[{\sin ^2}\theta + {\cos ^2}\theta = 1\], we can get \[{\cos ^2}\theta = 1 - {\sin ^2}\theta \].
Applying the above identity, we get,
\[ = \dfrac{{{{\cos }^2}\theta }}{{{{\cos }^2}\theta }}\]
\[ = 1\]
Hence, \[{\sec ^2}\theta - {\tan ^2}\theta = 1\].
Note:
In the given case, we have converted the secant and tangent into sine and cosine so we can establish the relationship between the two variables and solve the question easily. The key to solve such a question is to identify which trigonometric identity will be useful and accordingly apply the same. We should generally convert the variables into sine and cosine because they are the basic identities.
There can be more than one way to solve the question, for example we can solve the given question by applying different identity as follows:
\[{\sec ^2}\theta = 1 + {\tan ^2}\theta \]
Substituting the above value in the given question, we get,
\[ = 1 + {\tan ^2}\theta - {\tan ^2}\theta \]
\[ = 1\].
Complete step by step solution:
Trigonometry is one of the branches of mathematics that uses trigonometric ratios to find the angles and missing sides of a triangle. The trigonometric functions are the trigonometric ratios of a triangle. The trigonometric functions are sine, cosine, sectant, cosecant, tangent and cotangent.
The Trigonometric formulas or Identities are the equations which are valid in the case of Right-Angled Triangles. They are also called Pythagorean Identities.
We can solve the question as follows-
We know that \[\sec \theta = \dfrac{1}{{\cos \theta }}\]so we can say that \[{\sec ^2}\theta = \dfrac{1}{{{{\cos }^2}\theta }}\].
Similarly, \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]so we can get \[{\tan ^2}\theta = \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }}\].
Applying the above identities, we get,
\[ = \dfrac{1}{{{{\cos }^2}\theta }} - \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }}\]
We have common denominator, so we can get,
\[ = \dfrac{{1 - {{\sin }^2}\theta }}{{{{\cos }^2}\theta }}\]
Now since \[{\sin ^2}\theta + {\cos ^2}\theta = 1\], we can get \[{\cos ^2}\theta = 1 - {\sin ^2}\theta \].
Applying the above identity, we get,
\[ = \dfrac{{{{\cos }^2}\theta }}{{{{\cos }^2}\theta }}\]
\[ = 1\]
Hence, \[{\sec ^2}\theta - {\tan ^2}\theta = 1\].
Note:
In the given case, we have converted the secant and tangent into sine and cosine so we can establish the relationship between the two variables and solve the question easily. The key to solve such a question is to identify which trigonometric identity will be useful and accordingly apply the same. We should generally convert the variables into sine and cosine because they are the basic identities.
There can be more than one way to solve the question, for example we can solve the given question by applying different identity as follows:
\[{\sec ^2}\theta = 1 + {\tan ^2}\theta \]
Substituting the above value in the given question, we get,
\[ = 1 + {\tan ^2}\theta - {\tan ^2}\theta \]
\[ = 1\].
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Who was the first woman to receive Bharat Ratna?

Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

