
Find the value of $\tan 10{}^\circ \tan 15{}^\circ \tan 75{}^\circ \tan 80{}^\circ $.
(a) $\dfrac{1}{16}$
(b) $0$
(c) $1$
(d) None of these
Answer
620.7k+ views
Hint: First use the formula of $\tan \theta $ to $\cot \theta $ conversion which is: $\tan \left( 90{}^\circ -\theta \right)=\cot \theta $.
Then use the formula $tan\theta \cot \theta =1$
Complete step-by-step answer:
We need to find the value of $\tan 10{}^\circ \tan 15{}^\circ \tan 75{}^\circ \tan 80{}^\circ $
We will first use the formula of $\tan \theta $ to $\cot \theta $ conversion: on either the first two terms or the last two terms.
Here, let us use it on $\tan 10{}^\circ $and $\tan 15{}^\circ $.
So $\tan 10{}^\circ $can be written as $\tan \left( 90{}^\circ -80{}^\circ \right)$
Now use the formula $\tan \left( 90{}^\circ -\theta \right)=\cot \theta $ where $\theta =80{}^\circ $
We will get the following:
$\tan \left( 90{}^\circ -80{}^\circ \right)=\cot 80{}^\circ $
So,$\tan 10{}^\circ =\cot 80{}^\circ $ …(1)
Similarly, $\tan 15{}^\circ $ can be written as $\tan \left( 90{}^\circ -75{}^\circ \right)$
Now use the formula $\tan \left( 90{}^\circ -\theta \right)=\cot \theta $ where $\theta =75{}^\circ $
We will get the following:
$\tan \left( 90{}^\circ -75{}^\circ \right)=\cot 75{}^\circ $
So, $\tan 15{}^\circ =\cot 75{}^\circ $ …(2)
Now we will substitute equations (1) and (2) in the given expression:
\[\tan 10{}^\circ \tan 15{}^\circ \tan 75{}^\circ \tan 80{}^\circ =\cot 80{}^\circ \cot 75{}^\circ \tan 75{}^\circ \tan 80{}^\circ \]
Rearranging the terms, we get the following:
\[\tan 10{}^\circ \tan 15{}^\circ \tan 75{}^\circ \tan 80{}^\circ =\left( \tan 80{}^\circ \cot 80{}^\circ \right)\left( \tan 75{}^\circ \cot 75{}^\circ \right)\] …(3)
Now we will use the formula $tan\theta \cot \theta =1$ which is derived by using $\left( \cot \theta =\dfrac{1}{\tan \theta } \right)$
So, \[\tan 80{}^\circ \cot 80{}^\circ =1\]
And \[\tan 75{}^\circ \cot 75{}^\circ =1\] …(4)
We will now substitute the equations in (4) to (3), we will get the following:
\[\tan 10{}^\circ \tan 15{}^\circ \tan 75{}^\circ \tan 80{}^\circ =\left( \tan 80{}^\circ \cot 80{}^\circ \right)\left( \tan 75{}^\circ \cot 75{}^\circ \right)\]
\[\tan 10{}^\circ \tan 15{}^\circ \tan 75{}^\circ \tan 80{}^\circ =\left( 1 \right)\left( 1 \right)\]
So, \[\tan 10{}^\circ \tan 15{}^\circ \tan 75{}^\circ \tan 80{}^\circ =1\]
which is option (c)
So the final answer is (c) $1$
Note: Instead of converting the first two terms from $\tan 10{}^\circ $and $\tan 15{}^\circ $to $\cot 80{}^\circ $and $\cot 75{}^\circ $respectively, one can change the last two terms from $\tan 75{}^\circ $and $\tan 80{}^\circ $to $\cot 15{}^\circ $and $\cot 10{}^\circ $respectively too and then proceed. The final answer will be the same in both the cases.
Then use the formula $tan\theta \cot \theta =1$
Complete step-by-step answer:
We need to find the value of $\tan 10{}^\circ \tan 15{}^\circ \tan 75{}^\circ \tan 80{}^\circ $
We will first use the formula of $\tan \theta $ to $\cot \theta $ conversion: on either the first two terms or the last two terms.
Here, let us use it on $\tan 10{}^\circ $and $\tan 15{}^\circ $.
So $\tan 10{}^\circ $can be written as $\tan \left( 90{}^\circ -80{}^\circ \right)$
Now use the formula $\tan \left( 90{}^\circ -\theta \right)=\cot \theta $ where $\theta =80{}^\circ $
We will get the following:
$\tan \left( 90{}^\circ -80{}^\circ \right)=\cot 80{}^\circ $
So,$\tan 10{}^\circ =\cot 80{}^\circ $ …(1)
Similarly, $\tan 15{}^\circ $ can be written as $\tan \left( 90{}^\circ -75{}^\circ \right)$
Now use the formula $\tan \left( 90{}^\circ -\theta \right)=\cot \theta $ where $\theta =75{}^\circ $
We will get the following:
$\tan \left( 90{}^\circ -75{}^\circ \right)=\cot 75{}^\circ $
So, $\tan 15{}^\circ =\cot 75{}^\circ $ …(2)
Now we will substitute equations (1) and (2) in the given expression:
\[\tan 10{}^\circ \tan 15{}^\circ \tan 75{}^\circ \tan 80{}^\circ =\cot 80{}^\circ \cot 75{}^\circ \tan 75{}^\circ \tan 80{}^\circ \]
Rearranging the terms, we get the following:
\[\tan 10{}^\circ \tan 15{}^\circ \tan 75{}^\circ \tan 80{}^\circ =\left( \tan 80{}^\circ \cot 80{}^\circ \right)\left( \tan 75{}^\circ \cot 75{}^\circ \right)\] …(3)
Now we will use the formula $tan\theta \cot \theta =1$ which is derived by using $\left( \cot \theta =\dfrac{1}{\tan \theta } \right)$
So, \[\tan 80{}^\circ \cot 80{}^\circ =1\]
And \[\tan 75{}^\circ \cot 75{}^\circ =1\] …(4)
We will now substitute the equations in (4) to (3), we will get the following:
\[\tan 10{}^\circ \tan 15{}^\circ \tan 75{}^\circ \tan 80{}^\circ =\left( \tan 80{}^\circ \cot 80{}^\circ \right)\left( \tan 75{}^\circ \cot 75{}^\circ \right)\]
\[\tan 10{}^\circ \tan 15{}^\circ \tan 75{}^\circ \tan 80{}^\circ =\left( 1 \right)\left( 1 \right)\]
So, \[\tan 10{}^\circ \tan 15{}^\circ \tan 75{}^\circ \tan 80{}^\circ =1\]
which is option (c)
So the final answer is (c) $1$
Note: Instead of converting the first two terms from $\tan 10{}^\circ $and $\tan 15{}^\circ $to $\cot 80{}^\circ $and $\cot 75{}^\circ $respectively, one can change the last two terms from $\tan 75{}^\circ $and $\tan 80{}^\circ $to $\cot 15{}^\circ $and $\cot 10{}^\circ $respectively too and then proceed. The final answer will be the same in both the cases.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

