Answer
Verified
497.1k+ views
Hint: First use the formula of $\tan \theta $ to $\cot \theta $ conversion which is: $\tan \left( 90{}^\circ -\theta \right)=\cot \theta $.
Then use the formula $tan\theta \cot \theta =1$
Complete step-by-step answer:
We need to find the value of $\tan 10{}^\circ \tan 15{}^\circ \tan 75{}^\circ \tan 80{}^\circ $
We will first use the formula of $\tan \theta $ to $\cot \theta $ conversion: on either the first two terms or the last two terms.
Here, let us use it on $\tan 10{}^\circ $and $\tan 15{}^\circ $.
So $\tan 10{}^\circ $can be written as $\tan \left( 90{}^\circ -80{}^\circ \right)$
Now use the formula $\tan \left( 90{}^\circ -\theta \right)=\cot \theta $ where $\theta =80{}^\circ $
We will get the following:
$\tan \left( 90{}^\circ -80{}^\circ \right)=\cot 80{}^\circ $
So,$\tan 10{}^\circ =\cot 80{}^\circ $ …(1)
Similarly, $\tan 15{}^\circ $ can be written as $\tan \left( 90{}^\circ -75{}^\circ \right)$
Now use the formula $\tan \left( 90{}^\circ -\theta \right)=\cot \theta $ where $\theta =75{}^\circ $
We will get the following:
$\tan \left( 90{}^\circ -75{}^\circ \right)=\cot 75{}^\circ $
So, $\tan 15{}^\circ =\cot 75{}^\circ $ …(2)
Now we will substitute equations (1) and (2) in the given expression:
\[\tan 10{}^\circ \tan 15{}^\circ \tan 75{}^\circ \tan 80{}^\circ =\cot 80{}^\circ \cot 75{}^\circ \tan 75{}^\circ \tan 80{}^\circ \]
Rearranging the terms, we get the following:
\[\tan 10{}^\circ \tan 15{}^\circ \tan 75{}^\circ \tan 80{}^\circ =\left( \tan 80{}^\circ \cot 80{}^\circ \right)\left( \tan 75{}^\circ \cot 75{}^\circ \right)\] …(3)
Now we will use the formula $tan\theta \cot \theta =1$ which is derived by using $\left( \cot \theta =\dfrac{1}{\tan \theta } \right)$
So, \[\tan 80{}^\circ \cot 80{}^\circ =1\]
And \[\tan 75{}^\circ \cot 75{}^\circ =1\] …(4)
We will now substitute the equations in (4) to (3), we will get the following:
\[\tan 10{}^\circ \tan 15{}^\circ \tan 75{}^\circ \tan 80{}^\circ =\left( \tan 80{}^\circ \cot 80{}^\circ \right)\left( \tan 75{}^\circ \cot 75{}^\circ \right)\]
\[\tan 10{}^\circ \tan 15{}^\circ \tan 75{}^\circ \tan 80{}^\circ =\left( 1 \right)\left( 1 \right)\]
So, \[\tan 10{}^\circ \tan 15{}^\circ \tan 75{}^\circ \tan 80{}^\circ =1\]
which is option (c)
So the final answer is (c) $1$
Note: Instead of converting the first two terms from $\tan 10{}^\circ $and $\tan 15{}^\circ $to $\cot 80{}^\circ $and $\cot 75{}^\circ $respectively, one can change the last two terms from $\tan 75{}^\circ $and $\tan 80{}^\circ $to $\cot 15{}^\circ $and $\cot 10{}^\circ $respectively too and then proceed. The final answer will be the same in both the cases.
Then use the formula $tan\theta \cot \theta =1$
Complete step-by-step answer:
We need to find the value of $\tan 10{}^\circ \tan 15{}^\circ \tan 75{}^\circ \tan 80{}^\circ $
We will first use the formula of $\tan \theta $ to $\cot \theta $ conversion: on either the first two terms or the last two terms.
Here, let us use it on $\tan 10{}^\circ $and $\tan 15{}^\circ $.
So $\tan 10{}^\circ $can be written as $\tan \left( 90{}^\circ -80{}^\circ \right)$
Now use the formula $\tan \left( 90{}^\circ -\theta \right)=\cot \theta $ where $\theta =80{}^\circ $
We will get the following:
$\tan \left( 90{}^\circ -80{}^\circ \right)=\cot 80{}^\circ $
So,$\tan 10{}^\circ =\cot 80{}^\circ $ …(1)
Similarly, $\tan 15{}^\circ $ can be written as $\tan \left( 90{}^\circ -75{}^\circ \right)$
Now use the formula $\tan \left( 90{}^\circ -\theta \right)=\cot \theta $ where $\theta =75{}^\circ $
We will get the following:
$\tan \left( 90{}^\circ -75{}^\circ \right)=\cot 75{}^\circ $
So, $\tan 15{}^\circ =\cot 75{}^\circ $ …(2)
Now we will substitute equations (1) and (2) in the given expression:
\[\tan 10{}^\circ \tan 15{}^\circ \tan 75{}^\circ \tan 80{}^\circ =\cot 80{}^\circ \cot 75{}^\circ \tan 75{}^\circ \tan 80{}^\circ \]
Rearranging the terms, we get the following:
\[\tan 10{}^\circ \tan 15{}^\circ \tan 75{}^\circ \tan 80{}^\circ =\left( \tan 80{}^\circ \cot 80{}^\circ \right)\left( \tan 75{}^\circ \cot 75{}^\circ \right)\] …(3)
Now we will use the formula $tan\theta \cot \theta =1$ which is derived by using $\left( \cot \theta =\dfrac{1}{\tan \theta } \right)$
So, \[\tan 80{}^\circ \cot 80{}^\circ =1\]
And \[\tan 75{}^\circ \cot 75{}^\circ =1\] …(4)
We will now substitute the equations in (4) to (3), we will get the following:
\[\tan 10{}^\circ \tan 15{}^\circ \tan 75{}^\circ \tan 80{}^\circ =\left( \tan 80{}^\circ \cot 80{}^\circ \right)\left( \tan 75{}^\circ \cot 75{}^\circ \right)\]
\[\tan 10{}^\circ \tan 15{}^\circ \tan 75{}^\circ \tan 80{}^\circ =\left( 1 \right)\left( 1 \right)\]
So, \[\tan 10{}^\circ \tan 15{}^\circ \tan 75{}^\circ \tan 80{}^\circ =1\]
which is option (c)
So the final answer is (c) $1$
Note: Instead of converting the first two terms from $\tan 10{}^\circ $and $\tan 15{}^\circ $to $\cot 80{}^\circ $and $\cot 75{}^\circ $respectively, one can change the last two terms from $\tan 75{}^\circ $and $\tan 80{}^\circ $to $\cot 15{}^\circ $and $\cot 10{}^\circ $respectively too and then proceed. The final answer will be the same in both the cases.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers