Find the value of $\tan {15^0} + \tan {75^0}$.
$
\left( A \right){\text{. }}2\sqrt 3 \\
\left( B \right).{\text{ }}2 \\
\left( C \right).{\text{ }}2 - \sqrt 3 \\
\left( D \right).{\text{ }}4\sqrt 3 \\
\left( E \right).{\text{ }}4 \\
$
Answer
Verified
506.7k+ views
Hint- Try to make the expression of the form $\dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}$ which is equal to$\sin 2\theta $.
Given: $\tan {15^0} + \tan {75^0}$
Rewriting above as:
$ = {\text{tan1}}{{\text{5}}^0} + \dfrac{1}{{\cot {{75}^0}}}{\text{ }}\left\{ {\because \tan \theta = \dfrac{1}{{\cot \theta }}} \right\}$
Now, using $\tan \theta = \cot \left( {{{90}^0} - \theta } \right)$ to convert $\cot $ into $\tan $, we get
$
\Rightarrow \tan {15^0} + \dfrac{1}{{\cot \left( {{{90}^0} - {{15}^0}} \right)}} \\
\Rightarrow \tan {15^0} + \dfrac{1}{{\tan {{15}^0}}}{\text{ }}\left\{ {\because \tan \theta = \cot \left( {{{90}^0} - \theta } \right)} \right\} \\
$
By cross-Multiplying, we get
$ \Rightarrow \dfrac{{{{\tan }^2}{{15}^0} + 1}}{{\tan {{15}^0}}}$
Multiply and divide by $2$, we get
$
\Rightarrow \dfrac{{2\left[ {{{\tan }^2}{{15}^0} + 1} \right]}}{{2\tan {{15}^0}}} \\
\Rightarrow \dfrac{2}{{\sin 2 \times {{15}^0}}}{\text{ }}\left\{ {\because \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }} = \sin 2\theta } \right\} \\
\Rightarrow \dfrac{2}{{\sin {{30}^0}}} \\
$
Now, putting the value of $\sin {30^0} = \dfrac{1}{2}$, we get
$
\Rightarrow \dfrac{2}{{\left( {\dfrac{1}{2}} \right)}} \\
\Rightarrow 4 \\
$
$\therefore $ Correct option is $\left( E \right)$
Note- Whenever there are integer angles inside trigonometric functions whose value is not known to us, always try to convert it by using the $\left( {{{90}^0} - \theta } \right)$ form so as to make some trigonometric relations which makes problems much easier to solve.
Given: $\tan {15^0} + \tan {75^0}$
Rewriting above as:
$ = {\text{tan1}}{{\text{5}}^0} + \dfrac{1}{{\cot {{75}^0}}}{\text{ }}\left\{ {\because \tan \theta = \dfrac{1}{{\cot \theta }}} \right\}$
Now, using $\tan \theta = \cot \left( {{{90}^0} - \theta } \right)$ to convert $\cot $ into $\tan $, we get
$
\Rightarrow \tan {15^0} + \dfrac{1}{{\cot \left( {{{90}^0} - {{15}^0}} \right)}} \\
\Rightarrow \tan {15^0} + \dfrac{1}{{\tan {{15}^0}}}{\text{ }}\left\{ {\because \tan \theta = \cot \left( {{{90}^0} - \theta } \right)} \right\} \\
$
By cross-Multiplying, we get
$ \Rightarrow \dfrac{{{{\tan }^2}{{15}^0} + 1}}{{\tan {{15}^0}}}$
Multiply and divide by $2$, we get
$
\Rightarrow \dfrac{{2\left[ {{{\tan }^2}{{15}^0} + 1} \right]}}{{2\tan {{15}^0}}} \\
\Rightarrow \dfrac{2}{{\sin 2 \times {{15}^0}}}{\text{ }}\left\{ {\because \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }} = \sin 2\theta } \right\} \\
\Rightarrow \dfrac{2}{{\sin {{30}^0}}} \\
$
Now, putting the value of $\sin {30^0} = \dfrac{1}{2}$, we get
$
\Rightarrow \dfrac{2}{{\left( {\dfrac{1}{2}} \right)}} \\
\Rightarrow 4 \\
$
$\therefore $ Correct option is $\left( E \right)$
Note- Whenever there are integer angles inside trigonometric functions whose value is not known to us, always try to convert it by using the $\left( {{{90}^0} - \theta } \right)$ form so as to make some trigonometric relations which makes problems much easier to solve.
Recently Updated Pages
Class 10 Question and Answer - Your Ultimate Solutions Guide
Master Class 10 Science: Engaging Questions & Answers for Success
Master Class 10 Maths: Engaging Questions & Answers for Success
Master Class 10 General Knowledge: Engaging Questions & Answers for Success
Master Class 10 Social Science: Engaging Questions & Answers for Success
Master Class 10 English: Engaging Questions & Answers for Success
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
The capital of British India was transferred from Calcutta class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE