Find the value of the expression $2{{\left( \sin 15+\sin 75 \right)}^{2}}$?
Answer
Verified
408.3k+ views
Hint: We first try to convert all the trigonometric ratios into forms of equal angles to apply the formulas and identities like $2\sin \theta \cos \theta =\sin 2\theta $ and ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$. We convert $\sin 75$ into $\cos 15$. We break the square part using the formula of ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$. We place the values in the formula and find the final solution.
Complete step by step answer:
We first convert all the given trigonometric ratios into forms of equal angles. We choose angles of 15.
We know that $\sin \alpha =\cos \left( \dfrac{\pi }{2}-\alpha \right)$. Putting the value of $\alpha =75$, we get
$\sin 75=\cos \left( \dfrac{\pi }{2}-75 \right)=\cos 15$.
Therefore, we have $2{{\left( \sin 15+\sin 75 \right)}^{2}}=2{{\left( \sin 15+\cos 15 \right)}^{2}}$.
We now apply the formula of ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.
We get ${{\left( \sin 15+\cos 15 \right)}^{2}}={{\sin }^{2}}15+{{\cos }^{2}}15+2\sin 15\cos 15$.
We have the formula of multiple angles where we get $2\sin \theta \cos \theta =\sin 2\theta $.
So, we get $2\sin 15\cos 15=\sin \left( 15\times 2 \right)=\sin 30=\dfrac{1}{2}$.
We also have the identity formula of ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$.
Applying the formula, we get ${{\sin }^{2}}15+{{\cos }^{2}}15=1$.
Putting all the values we get
$\begin{align}
& {{\left( \sin 15+\cos 15 \right)}^{2}} \\
& ={{\sin }^{2}}15+{{\cos }^{2}}15+2\sin 15\cos 15 \\
& =1+\dfrac{1}{2} \\
& =\dfrac{3}{2} \\
\end{align}$
At the end we multiply with 2 to get $2{{\left( \sin 15+\sin 75 \right)}^{2}}=2\times \dfrac{3}{2}=3$.
The value of the expression $2{{\left( \sin 15+\sin 75 \right)}^{2}}$ is 3.
Note: we can also convert $\sin 15$ into $\cos 75$. But in that case the multiple angle formula gives us the $\sin \left( 75\times 2 \right)=\sin 150$ instead of $\sin 30=\dfrac{1}{2}$. We have to convert the associative angle using other formulas to simplify it. The problem becomes unnecessarily longer and that’s why we used an angle of 15.
Complete step by step answer:
We first convert all the given trigonometric ratios into forms of equal angles. We choose angles of 15.
We know that $\sin \alpha =\cos \left( \dfrac{\pi }{2}-\alpha \right)$. Putting the value of $\alpha =75$, we get
$\sin 75=\cos \left( \dfrac{\pi }{2}-75 \right)=\cos 15$.
Therefore, we have $2{{\left( \sin 15+\sin 75 \right)}^{2}}=2{{\left( \sin 15+\cos 15 \right)}^{2}}$.
We now apply the formula of ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.
We get ${{\left( \sin 15+\cos 15 \right)}^{2}}={{\sin }^{2}}15+{{\cos }^{2}}15+2\sin 15\cos 15$.
We have the formula of multiple angles where we get $2\sin \theta \cos \theta =\sin 2\theta $.
So, we get $2\sin 15\cos 15=\sin \left( 15\times 2 \right)=\sin 30=\dfrac{1}{2}$.
We also have the identity formula of ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$.
Applying the formula, we get ${{\sin }^{2}}15+{{\cos }^{2}}15=1$.
Putting all the values we get
$\begin{align}
& {{\left( \sin 15+\cos 15 \right)}^{2}} \\
& ={{\sin }^{2}}15+{{\cos }^{2}}15+2\sin 15\cos 15 \\
& =1+\dfrac{1}{2} \\
& =\dfrac{3}{2} \\
\end{align}$
At the end we multiply with 2 to get $2{{\left( \sin 15+\sin 75 \right)}^{2}}=2\times \dfrac{3}{2}=3$.
The value of the expression $2{{\left( \sin 15+\sin 75 \right)}^{2}}$ is 3.
Note: we can also convert $\sin 15$ into $\cos 75$. But in that case the multiple angle formula gives us the $\sin \left( 75\times 2 \right)=\sin 150$ instead of $\sin 30=\dfrac{1}{2}$. We have to convert the associative angle using other formulas to simplify it. The problem becomes unnecessarily longer and that’s why we used an angle of 15.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE