Answer
Verified
491.7k+ views
Hint: We know that, \[{{\cot }^{-1}}\left( \dfrac{x}{y} \right)={{\operatorname{cosec}}^{-1}}\left( \dfrac{\sqrt{{{x}^{2}}+{{y}^{2}}}}{y} \right)\], so we will convert \[{{\cot }^{-1}}\left( -\dfrac{12}{5} \right)\] in terms of \[{{\operatorname{cosec}}^{-1}}\lambda \] and simplify it by keeping in mind that \[{{\cot }^{-1}}\left( \dfrac{x}{y} \right)\] is defined in range of \[\left[ 0,\pi \right]\], so the sign of \[\left( \dfrac{x}{y} \right)\] is positive from \[\left[ 0,\dfrac{\pi }{2} \right]\] and negative from \[\left[ \dfrac{\pi }{2},\pi \right]\].
Complete step by step answer:
We have to evaluate \[\operatorname{cosec}\left\{ {{\cot }^{-1}}\left( -\dfrac{12}{5} \right) \right\}......\left( i \right)\]
To evaluate \[\operatorname{cosec}\left\{ {{\cot }^{-1}}\left( -\dfrac{12}{5} \right) \right\}\], first we will convert \[{{\cot }^{-1}}\left( -\dfrac{12}{5} \right)\] in terms of \[{{\operatorname{cosec}}^{-1}}\lambda \]. Now, let us consider \[\left( \dfrac{12}{5} \right)=\left( \dfrac{x}{y} \right)\]. Therefore, we can write \[{{\cot }^{-1}}\left( -\dfrac{12}{5} \right)={{\cot }^{-1}}\left( -\dfrac{x}{y} \right)......\left( ii \right)\]
As the sign of \[\left( \dfrac{x}{y} \right)\] is negative, so it will lie in the range of \[\left[ \dfrac{\pi }{2},\pi \right]\].
We know that, if \[\cot \theta =\dfrac{x}{y}\], then, we can write \[\cot \left( \pi -\theta \right)=-\dfrac{x}{y}\]. Therefore, we will get \[{{\cot }^{-1}}\left( \dfrac{x}{y} \right)=\theta \] and \[{{\cot }^{-1}}\left( -\dfrac{x}{y} \right)=\pi -\theta \]
From this we can conclude that, \[{{\cot }^{-1}}\left( -\dfrac{x}{y} \right)=\pi -{{\cot }^{-1}}\left( \dfrac{x}{y} \right)......\left( iii \right)\]
As we have assumed that \[\left( \dfrac{12}{5} \right)=\left( \dfrac{x}{y} \right)\] and from equation (ii) and (iii), we get that
\[{{\cot }^{-1}}\left( -\dfrac{12}{5} \right)=\pi -{{\cot }^{-1}}\left( \dfrac{12}{5} \right)\]
Now, we are putting the value of \[{{\cot }^{-1}}\left( -\dfrac{12}{5} \right)\] in (i), so we can write it as, \[\operatorname{cosec}\left\{ {{\cot }^{-1}}\left( -\dfrac{12}{5} \right) \right\}=\operatorname{cosec}\left\{ \pi -{{\cot }^{-1}}\left( \dfrac{12}{5} \right) \right\}......\left( iv \right)\]
As, we know that \[cosec\theta \] is positive in 1st as well as in 2nd quadrant that means positive in the domain of \[\left[ 0,\pi \right]\]. Therefore, we can write \[cosec\left( \pi -\theta \right)=cosec\left( \theta \right)\]
So, we can write equation (iv) as \[\operatorname{cosec}\left\{ \pi -{{\cot }^{-1}}\left( \dfrac{12}{5} \right) \right\}=\operatorname{cosec}\left\{ {{\cot }^{-1}}\left( \dfrac{12}{5} \right) \right\}......\left( v \right)\]
We know that, \[{{\cot }^{-1}}\left( \dfrac{x}{y} \right)={{\operatorname{cosec}}^{-1}}\left( \dfrac{\sqrt{{{x}^{2}}+{{y}^{2}}}}{y} \right)\]
So, to simplify \[\operatorname{cosec}\left\{ {{\cot }^{-1}}\left( \dfrac{12}{5} \right) \right\}\], we will put \[{{\cot }^{-1}}\left( \dfrac{12}{5} \right)=cose{{c}^{-1}}\left( \dfrac{\sqrt{{{12}^{2}}+{{5}^{2}}}}{5} \right)\]
Now, after simplifying the above equation, we will get,
\[\Rightarrow {{\cot }^{-1}}\left( \dfrac{12}{5} \right)=cose{{c}^{-1}}\left( \dfrac{\sqrt{144+25}}{5} \right)\]
\[\Rightarrow {{\cot }^{-1}}\left( \dfrac{12}{5} \right)=cose{{c}^{-1}}\left( \dfrac{\sqrt{169}}{5} \right)\]
\[\Rightarrow {{\cot }^{-1}}\left( \dfrac{12}{5} \right)=cose{{c}^{-1}}\left( \dfrac{13}{5} \right)......\left( vi \right)\]
Now, we are putting the values of \[{{\cot }^{-1}}\left( \dfrac{12}{5} \right)\] from (vi) to (v). Therefore, we get \[\operatorname{cosec}\left\{ {{\cot }^{-1}}\left( \dfrac{12}{5} \right) \right\}=\operatorname{cosec}\left\{ cose{{c}^{-1}}\left( \dfrac{13}{5} \right) \right\}\]
\[\Rightarrow \operatorname{cosec}\left\{ {{\cot }^{-1}}\left( \dfrac{12}{5} \right) \right\}=\left( \dfrac{13}{5} \right)\]
Therefore, we conclude that on simplifying \[\operatorname{cosec}\left\{ {{\cot }^{-1}}\left( -\dfrac{12}{5} \right) \right\}\], we get \[\left( \dfrac{13}{5} \right)\] as an answer
Note: We can also convert \[\operatorname{cosec}\] in terms of \[\sin \] and \[\cot \] in terms of \[\tan \], if we don’t know the conversions from \[\cot \] to \[\operatorname{cosec}\]. It is necessary that we should know the domain of both the functions to get the answer correctly. The possible mistake one can commit while solving this question is not keeping in mind the negative sign of \[\left( -\dfrac{12}{5} \right)\], this might not change the answer but if we consider range and domain, then their values will be changed.
Complete step by step answer:
We have to evaluate \[\operatorname{cosec}\left\{ {{\cot }^{-1}}\left( -\dfrac{12}{5} \right) \right\}......\left( i \right)\]
To evaluate \[\operatorname{cosec}\left\{ {{\cot }^{-1}}\left( -\dfrac{12}{5} \right) \right\}\], first we will convert \[{{\cot }^{-1}}\left( -\dfrac{12}{5} \right)\] in terms of \[{{\operatorname{cosec}}^{-1}}\lambda \]. Now, let us consider \[\left( \dfrac{12}{5} \right)=\left( \dfrac{x}{y} \right)\]. Therefore, we can write \[{{\cot }^{-1}}\left( -\dfrac{12}{5} \right)={{\cot }^{-1}}\left( -\dfrac{x}{y} \right)......\left( ii \right)\]
As the sign of \[\left( \dfrac{x}{y} \right)\] is negative, so it will lie in the range of \[\left[ \dfrac{\pi }{2},\pi \right]\].
We know that, if \[\cot \theta =\dfrac{x}{y}\], then, we can write \[\cot \left( \pi -\theta \right)=-\dfrac{x}{y}\]. Therefore, we will get \[{{\cot }^{-1}}\left( \dfrac{x}{y} \right)=\theta \] and \[{{\cot }^{-1}}\left( -\dfrac{x}{y} \right)=\pi -\theta \]
From this we can conclude that, \[{{\cot }^{-1}}\left( -\dfrac{x}{y} \right)=\pi -{{\cot }^{-1}}\left( \dfrac{x}{y} \right)......\left( iii \right)\]
As we have assumed that \[\left( \dfrac{12}{5} \right)=\left( \dfrac{x}{y} \right)\] and from equation (ii) and (iii), we get that
\[{{\cot }^{-1}}\left( -\dfrac{12}{5} \right)=\pi -{{\cot }^{-1}}\left( \dfrac{12}{5} \right)\]
Now, we are putting the value of \[{{\cot }^{-1}}\left( -\dfrac{12}{5} \right)\] in (i), so we can write it as, \[\operatorname{cosec}\left\{ {{\cot }^{-1}}\left( -\dfrac{12}{5} \right) \right\}=\operatorname{cosec}\left\{ \pi -{{\cot }^{-1}}\left( \dfrac{12}{5} \right) \right\}......\left( iv \right)\]
As, we know that \[cosec\theta \] is positive in 1st as well as in 2nd quadrant that means positive in the domain of \[\left[ 0,\pi \right]\]. Therefore, we can write \[cosec\left( \pi -\theta \right)=cosec\left( \theta \right)\]
So, we can write equation (iv) as \[\operatorname{cosec}\left\{ \pi -{{\cot }^{-1}}\left( \dfrac{12}{5} \right) \right\}=\operatorname{cosec}\left\{ {{\cot }^{-1}}\left( \dfrac{12}{5} \right) \right\}......\left( v \right)\]
We know that, \[{{\cot }^{-1}}\left( \dfrac{x}{y} \right)={{\operatorname{cosec}}^{-1}}\left( \dfrac{\sqrt{{{x}^{2}}+{{y}^{2}}}}{y} \right)\]
So, to simplify \[\operatorname{cosec}\left\{ {{\cot }^{-1}}\left( \dfrac{12}{5} \right) \right\}\], we will put \[{{\cot }^{-1}}\left( \dfrac{12}{5} \right)=cose{{c}^{-1}}\left( \dfrac{\sqrt{{{12}^{2}}+{{5}^{2}}}}{5} \right)\]
Now, after simplifying the above equation, we will get,
\[\Rightarrow {{\cot }^{-1}}\left( \dfrac{12}{5} \right)=cose{{c}^{-1}}\left( \dfrac{\sqrt{144+25}}{5} \right)\]
\[\Rightarrow {{\cot }^{-1}}\left( \dfrac{12}{5} \right)=cose{{c}^{-1}}\left( \dfrac{\sqrt{169}}{5} \right)\]
\[\Rightarrow {{\cot }^{-1}}\left( \dfrac{12}{5} \right)=cose{{c}^{-1}}\left( \dfrac{13}{5} \right)......\left( vi \right)\]
Now, we are putting the values of \[{{\cot }^{-1}}\left( \dfrac{12}{5} \right)\] from (vi) to (v). Therefore, we get \[\operatorname{cosec}\left\{ {{\cot }^{-1}}\left( \dfrac{12}{5} \right) \right\}=\operatorname{cosec}\left\{ cose{{c}^{-1}}\left( \dfrac{13}{5} \right) \right\}\]
\[\Rightarrow \operatorname{cosec}\left\{ {{\cot }^{-1}}\left( \dfrac{12}{5} \right) \right\}=\left( \dfrac{13}{5} \right)\]
Therefore, we conclude that on simplifying \[\operatorname{cosec}\left\{ {{\cot }^{-1}}\left( -\dfrac{12}{5} \right) \right\}\], we get \[\left( \dfrac{13}{5} \right)\] as an answer
Note: We can also convert \[\operatorname{cosec}\] in terms of \[\sin \] and \[\cot \] in terms of \[\tan \], if we don’t know the conversions from \[\cot \] to \[\operatorname{cosec}\]. It is necessary that we should know the domain of both the functions to get the answer correctly. The possible mistake one can commit while solving this question is not keeping in mind the negative sign of \[\left( -\dfrac{12}{5} \right)\], this might not change the answer but if we consider range and domain, then their values will be changed.
Recently Updated Pages
A particle is undergoing a horizontal circle of radius class 11 physics CBSE
A particle is thrown vertically upwards with a velocity class 11 physics CBSE
A particle is rotated in a vertical circle by connecting class 11 physics CBSE
A particle is projected with a velocity v such that class 11 physics CBSE
A particle is projected with a velocity u making an class 11 physics CBSE
A particle is projected vertically upwards and it reaches class 11 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE