Answer
Verified
482.4k+ views
Hint: We know that, \[{{\cot }^{-1}}\left( \dfrac{x}{y} \right)={{\operatorname{cosec}}^{-1}}\left( \dfrac{\sqrt{{{x}^{2}}+{{y}^{2}}}}{y} \right)\], so we will convert \[{{\cot }^{-1}}\left( -\dfrac{12}{5} \right)\] in terms of \[{{\operatorname{cosec}}^{-1}}\lambda \] and simplify it by keeping in mind that \[{{\cot }^{-1}}\left( \dfrac{x}{y} \right)\] is defined in range of \[\left[ 0,\pi \right]\], so the sign of \[\left( \dfrac{x}{y} \right)\] is positive from \[\left[ 0,\dfrac{\pi }{2} \right]\] and negative from \[\left[ \dfrac{\pi }{2},\pi \right]\].
Complete step by step answer:
We have to evaluate \[\operatorname{cosec}\left\{ {{\cot }^{-1}}\left( -\dfrac{12}{5} \right) \right\}......\left( i \right)\]
To evaluate \[\operatorname{cosec}\left\{ {{\cot }^{-1}}\left( -\dfrac{12}{5} \right) \right\}\], first we will convert \[{{\cot }^{-1}}\left( -\dfrac{12}{5} \right)\] in terms of \[{{\operatorname{cosec}}^{-1}}\lambda \]. Now, let us consider \[\left( \dfrac{12}{5} \right)=\left( \dfrac{x}{y} \right)\]. Therefore, we can write \[{{\cot }^{-1}}\left( -\dfrac{12}{5} \right)={{\cot }^{-1}}\left( -\dfrac{x}{y} \right)......\left( ii \right)\]
As the sign of \[\left( \dfrac{x}{y} \right)\] is negative, so it will lie in the range of \[\left[ \dfrac{\pi }{2},\pi \right]\].
We know that, if \[\cot \theta =\dfrac{x}{y}\], then, we can write \[\cot \left( \pi -\theta \right)=-\dfrac{x}{y}\]. Therefore, we will get \[{{\cot }^{-1}}\left( \dfrac{x}{y} \right)=\theta \] and \[{{\cot }^{-1}}\left( -\dfrac{x}{y} \right)=\pi -\theta \]
From this we can conclude that, \[{{\cot }^{-1}}\left( -\dfrac{x}{y} \right)=\pi -{{\cot }^{-1}}\left( \dfrac{x}{y} \right)......\left( iii \right)\]
As we have assumed that \[\left( \dfrac{12}{5} \right)=\left( \dfrac{x}{y} \right)\] and from equation (ii) and (iii), we get that
\[{{\cot }^{-1}}\left( -\dfrac{12}{5} \right)=\pi -{{\cot }^{-1}}\left( \dfrac{12}{5} \right)\]
Now, we are putting the value of \[{{\cot }^{-1}}\left( -\dfrac{12}{5} \right)\] in (i), so we can write it as, \[\operatorname{cosec}\left\{ {{\cot }^{-1}}\left( -\dfrac{12}{5} \right) \right\}=\operatorname{cosec}\left\{ \pi -{{\cot }^{-1}}\left( \dfrac{12}{5} \right) \right\}......\left( iv \right)\]
As, we know that \[cosec\theta \] is positive in 1st as well as in 2nd quadrant that means positive in the domain of \[\left[ 0,\pi \right]\]. Therefore, we can write \[cosec\left( \pi -\theta \right)=cosec\left( \theta \right)\]
So, we can write equation (iv) as \[\operatorname{cosec}\left\{ \pi -{{\cot }^{-1}}\left( \dfrac{12}{5} \right) \right\}=\operatorname{cosec}\left\{ {{\cot }^{-1}}\left( \dfrac{12}{5} \right) \right\}......\left( v \right)\]
We know that, \[{{\cot }^{-1}}\left( \dfrac{x}{y} \right)={{\operatorname{cosec}}^{-1}}\left( \dfrac{\sqrt{{{x}^{2}}+{{y}^{2}}}}{y} \right)\]
So, to simplify \[\operatorname{cosec}\left\{ {{\cot }^{-1}}\left( \dfrac{12}{5} \right) \right\}\], we will put \[{{\cot }^{-1}}\left( \dfrac{12}{5} \right)=cose{{c}^{-1}}\left( \dfrac{\sqrt{{{12}^{2}}+{{5}^{2}}}}{5} \right)\]
Now, after simplifying the above equation, we will get,
\[\Rightarrow {{\cot }^{-1}}\left( \dfrac{12}{5} \right)=cose{{c}^{-1}}\left( \dfrac{\sqrt{144+25}}{5} \right)\]
\[\Rightarrow {{\cot }^{-1}}\left( \dfrac{12}{5} \right)=cose{{c}^{-1}}\left( \dfrac{\sqrt{169}}{5} \right)\]
\[\Rightarrow {{\cot }^{-1}}\left( \dfrac{12}{5} \right)=cose{{c}^{-1}}\left( \dfrac{13}{5} \right)......\left( vi \right)\]
Now, we are putting the values of \[{{\cot }^{-1}}\left( \dfrac{12}{5} \right)\] from (vi) to (v). Therefore, we get \[\operatorname{cosec}\left\{ {{\cot }^{-1}}\left( \dfrac{12}{5} \right) \right\}=\operatorname{cosec}\left\{ cose{{c}^{-1}}\left( \dfrac{13}{5} \right) \right\}\]
\[\Rightarrow \operatorname{cosec}\left\{ {{\cot }^{-1}}\left( \dfrac{12}{5} \right) \right\}=\left( \dfrac{13}{5} \right)\]
Therefore, we conclude that on simplifying \[\operatorname{cosec}\left\{ {{\cot }^{-1}}\left( -\dfrac{12}{5} \right) \right\}\], we get \[\left( \dfrac{13}{5} \right)\] as an answer
Note: We can also convert \[\operatorname{cosec}\] in terms of \[\sin \] and \[\cot \] in terms of \[\tan \], if we don’t know the conversions from \[\cot \] to \[\operatorname{cosec}\]. It is necessary that we should know the domain of both the functions to get the answer correctly. The possible mistake one can commit while solving this question is not keeping in mind the negative sign of \[\left( -\dfrac{12}{5} \right)\], this might not change the answer but if we consider range and domain, then their values will be changed.
Complete step by step answer:
We have to evaluate \[\operatorname{cosec}\left\{ {{\cot }^{-1}}\left( -\dfrac{12}{5} \right) \right\}......\left( i \right)\]
To evaluate \[\operatorname{cosec}\left\{ {{\cot }^{-1}}\left( -\dfrac{12}{5} \right) \right\}\], first we will convert \[{{\cot }^{-1}}\left( -\dfrac{12}{5} \right)\] in terms of \[{{\operatorname{cosec}}^{-1}}\lambda \]. Now, let us consider \[\left( \dfrac{12}{5} \right)=\left( \dfrac{x}{y} \right)\]. Therefore, we can write \[{{\cot }^{-1}}\left( -\dfrac{12}{5} \right)={{\cot }^{-1}}\left( -\dfrac{x}{y} \right)......\left( ii \right)\]
As the sign of \[\left( \dfrac{x}{y} \right)\] is negative, so it will lie in the range of \[\left[ \dfrac{\pi }{2},\pi \right]\].
We know that, if \[\cot \theta =\dfrac{x}{y}\], then, we can write \[\cot \left( \pi -\theta \right)=-\dfrac{x}{y}\]. Therefore, we will get \[{{\cot }^{-1}}\left( \dfrac{x}{y} \right)=\theta \] and \[{{\cot }^{-1}}\left( -\dfrac{x}{y} \right)=\pi -\theta \]
From this we can conclude that, \[{{\cot }^{-1}}\left( -\dfrac{x}{y} \right)=\pi -{{\cot }^{-1}}\left( \dfrac{x}{y} \right)......\left( iii \right)\]
As we have assumed that \[\left( \dfrac{12}{5} \right)=\left( \dfrac{x}{y} \right)\] and from equation (ii) and (iii), we get that
\[{{\cot }^{-1}}\left( -\dfrac{12}{5} \right)=\pi -{{\cot }^{-1}}\left( \dfrac{12}{5} \right)\]
Now, we are putting the value of \[{{\cot }^{-1}}\left( -\dfrac{12}{5} \right)\] in (i), so we can write it as, \[\operatorname{cosec}\left\{ {{\cot }^{-1}}\left( -\dfrac{12}{5} \right) \right\}=\operatorname{cosec}\left\{ \pi -{{\cot }^{-1}}\left( \dfrac{12}{5} \right) \right\}......\left( iv \right)\]
As, we know that \[cosec\theta \] is positive in 1st as well as in 2nd quadrant that means positive in the domain of \[\left[ 0,\pi \right]\]. Therefore, we can write \[cosec\left( \pi -\theta \right)=cosec\left( \theta \right)\]
So, we can write equation (iv) as \[\operatorname{cosec}\left\{ \pi -{{\cot }^{-1}}\left( \dfrac{12}{5} \right) \right\}=\operatorname{cosec}\left\{ {{\cot }^{-1}}\left( \dfrac{12}{5} \right) \right\}......\left( v \right)\]
We know that, \[{{\cot }^{-1}}\left( \dfrac{x}{y} \right)={{\operatorname{cosec}}^{-1}}\left( \dfrac{\sqrt{{{x}^{2}}+{{y}^{2}}}}{y} \right)\]
So, to simplify \[\operatorname{cosec}\left\{ {{\cot }^{-1}}\left( \dfrac{12}{5} \right) \right\}\], we will put \[{{\cot }^{-1}}\left( \dfrac{12}{5} \right)=cose{{c}^{-1}}\left( \dfrac{\sqrt{{{12}^{2}}+{{5}^{2}}}}{5} \right)\]
Now, after simplifying the above equation, we will get,
\[\Rightarrow {{\cot }^{-1}}\left( \dfrac{12}{5} \right)=cose{{c}^{-1}}\left( \dfrac{\sqrt{144+25}}{5} \right)\]
\[\Rightarrow {{\cot }^{-1}}\left( \dfrac{12}{5} \right)=cose{{c}^{-1}}\left( \dfrac{\sqrt{169}}{5} \right)\]
\[\Rightarrow {{\cot }^{-1}}\left( \dfrac{12}{5} \right)=cose{{c}^{-1}}\left( \dfrac{13}{5} \right)......\left( vi \right)\]
Now, we are putting the values of \[{{\cot }^{-1}}\left( \dfrac{12}{5} \right)\] from (vi) to (v). Therefore, we get \[\operatorname{cosec}\left\{ {{\cot }^{-1}}\left( \dfrac{12}{5} \right) \right\}=\operatorname{cosec}\left\{ cose{{c}^{-1}}\left( \dfrac{13}{5} \right) \right\}\]
\[\Rightarrow \operatorname{cosec}\left\{ {{\cot }^{-1}}\left( \dfrac{12}{5} \right) \right\}=\left( \dfrac{13}{5} \right)\]
Therefore, we conclude that on simplifying \[\operatorname{cosec}\left\{ {{\cot }^{-1}}\left( -\dfrac{12}{5} \right) \right\}\], we get \[\left( \dfrac{13}{5} \right)\] as an answer
Note: We can also convert \[\operatorname{cosec}\] in terms of \[\sin \] and \[\cot \] in terms of \[\tan \], if we don’t know the conversions from \[\cot \] to \[\operatorname{cosec}\]. It is necessary that we should know the domain of both the functions to get the answer correctly. The possible mistake one can commit while solving this question is not keeping in mind the negative sign of \[\left( -\dfrac{12}{5} \right)\], this might not change the answer but if we consider range and domain, then their values will be changed.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE