Find the value of the following trigonometric equation.
\[{\text{cos 2}}{{\text{0}}^{\text{0}}}{\text{ + cos 10}}{{\text{0}}^{\text{0}}}{\text{ + cos 14}}{{\text{0}}^{\text{0}}}\]
Answer
Verified
510.6k+ views
Hint: Let us apply the trigonometric identity for cos A + cos B. So, that above equation can be reduced into a product of trigonometric functions.
Now to find the value of the given trigonometric equation first we will apply a trigonometric formula to find the sum of cosines of two angles.
Complete step-by-step answer:
As we know that if A and B are some angles, then cos A + cos B = 2cos\[\left( {\dfrac{{{\text{A + B}}}}{{\text{2}}}} \right)\] cos\[\left( {\dfrac{{{\text{A - B}}}}{{\text{2}}}} \right)\].
So, if A = \[{\text{10}}{{\text{0}}^{\text{0}}}\] and B = \[{\text{2}}{{\text{0}}^{\text{0}}}\].
Then the given equation becomes,
$\Rightarrow$ \[\left( {{\text{cos 10}}{{\text{0}}^{\text{0}}}{\text{ + cos 2}}{{\text{0}}^{\text{0}}}} \right){\text{ + cos 14}}{{\text{0}}^{\text{0}}}{\text{ = }}\left( {{\text{2cos}}\left( {\dfrac{{{\text{10}}{{\text{0}}^0}{\text{ + 2}}{{\text{0}}^0}}}{{\text{2}}}} \right){\text{ cos}}\left( {\dfrac{{{\text{10}}{{\text{0}}^0}{\text{ - 2}}{{\text{0}}^0}}}{{\text{2}}}} \right)} \right){\text{ + cos 14}}{{\text{0}}^{\text{0}}}\] ___________(1)
On solving equation 1. We get,
$\Rightarrow$ \[\left( {{\text{cos 10}}{{\text{0}}^{\text{0}}}{\text{ + cos 2}}{{\text{0}}^{\text{0}}}} \right){\text{ + cos 14}}{{\text{0}}^{\text{0}}}{\text{ = 2}}\left( {{\text{cos 6}}{{\text{0}}^{\text{0}}}} \right)\left( {{\text{cos 4}}{{\text{0}}^{\text{0}}}} \right){\text{ + cos 14}}{{\text{0}}^{\text{0}}}\] _________________________ (2)
Now as we know that \[{\text{cos 6}}{{\text{0}}^{\text{0}}}\] = \[\dfrac{{\text{1}}}{{\text{2}}}\].
So, equation 2 becomes,
$\Rightarrow$ \[\left( {{\text{cos 10}}{{\text{0}}^{\text{0}}}{\text{ + cos 2}}{{\text{0}}^{\text{0}}}} \right){\text{ + cos 14}}{{\text{0}}^{\text{0}}}{\text{ = 2}}\left( {\dfrac{{\text{1}}}{{\text{2}}}} \right)\left( {{\text{cos 4}}{{\text{0}}^{\text{0}}}} \right){\text{ + cos 14}}{{\text{0}}^{\text{0}}}\]
$\Rightarrow$ \[\left( {{\text{cos 10}}{{\text{0}}^{\text{0}}}{\text{ + cos 2}}{{\text{0}}^{\text{0}}}} \right){\text{ + cos 14}}{{\text{0}}^{\text{0}}}{\text{ = cos 4}}{{\text{0}}^{\text{0}}}{\text{ + cos 14}}{{\text{0}}^{\text{0}}}\] ________________________ (3)
Now as we know that to find the value of given equation, we had to find the value of \[{\text{cos 4}}{{\text{0}}^{\text{0}}}{\text{ + cos 14}}{{\text{0}}^{\text{0}}}\].
So, applying the trigonometric identity of cos A + cos B in \[{\text{cos 14}}{{\text{0}}^{\text{0}}}{\text{ + cos 4}}{{\text{0}}^{\text{0}}}\].
So, let A = \[{\text{14}}{{\text{0}}^{\text{0}}}\] and B = \[{\text{4}}{{\text{0}}^{\text{0}}}\].
So, equation 3 becomes,
$\Rightarrow$ \[\left( {{\text{cos 10}}{{\text{0}}^{\text{0}}}{\text{ + cos 2}}{{\text{0}}^{\text{0}}}} \right){\text{ + cos 14}}{{\text{0}}^{\text{0}}}{\text{ = }}\left( {{\text{2cos}}\left( {\dfrac{{{\text{14}}{{\text{0}}^{\text{0}}}{\text{ + 4}}{{\text{0}}^{\text{0}}}}}{{\text{2}}}} \right){\text{ cos}}\left( {\dfrac{{{\text{14}}{{\text{0}}^{\text{0}}}{\text{ - 4}}{{\text{0}}^{\text{0}}}}}{{\text{2}}}} \right)} \right)\]
On solving the above equation. It becomes,
$\Rightarrow$ \[\left( {{\text{cos 10}}{{\text{0}}^{\text{0}}}{\text{ + cos 2}}{{\text{0}}^{\text{0}}}} \right){\text{ + cos 14}}{{\text{0}}^{\text{0}}}{\text{ = 2}}\left( {{\text{cos 9}}{{\text{0}}^{\text{0}}}} \right)\left( {{\text{cos 5}}{{\text{0}}^{\text{0}}}} \right)\] __________________________ (4)
Now as we know that \[{\text{cos 9}}{{\text{0}}^{\text{0}}}\] = 0.
So, equation 4 becomes,
$\Rightarrow$ \[{\text{cos 2}}{{\text{0}}^{\text{0}}}{\text{ + cos 10}}{{\text{0}}^{\text{0}}}{\text{ + cos 14}}{{\text{0}}^{\text{0}}}\] = 0
Hence, \[{\text{cos 2}}{{\text{0}}^{\text{0}}}{\text{ + cos 10}}{{\text{0}}^{\text{0}}}{\text{ + cos 14}}{{\text{0}}^{\text{0}}}\] = 0.
Note: Whenever we come up with this type of problem, where we are asked to find the sum of cosine of three different angles then first, we find the sum of cosine of any two angle from them using trigonometric identity which states that cos A + cos B = 2cos\[\left( {\dfrac{{{\text{A + B}}}}{{\text{2}}}} \right)\] cos\[\left( {\dfrac{{{\text{A - B}}}}{{\text{2}}}} \right)\]. And then we are left to find the sum of the cosine of the third angle and the cosine of angles we got from the previous sum. So, we had to again apply the trigonometric identity of cos A + cos B to get the required value of the given equation.
Now to find the value of the given trigonometric equation first we will apply a trigonometric formula to find the sum of cosines of two angles.
Complete step-by-step answer:
As we know that if A and B are some angles, then cos A + cos B = 2cos\[\left( {\dfrac{{{\text{A + B}}}}{{\text{2}}}} \right)\] cos\[\left( {\dfrac{{{\text{A - B}}}}{{\text{2}}}} \right)\].
So, if A = \[{\text{10}}{{\text{0}}^{\text{0}}}\] and B = \[{\text{2}}{{\text{0}}^{\text{0}}}\].
Then the given equation becomes,
$\Rightarrow$ \[\left( {{\text{cos 10}}{{\text{0}}^{\text{0}}}{\text{ + cos 2}}{{\text{0}}^{\text{0}}}} \right){\text{ + cos 14}}{{\text{0}}^{\text{0}}}{\text{ = }}\left( {{\text{2cos}}\left( {\dfrac{{{\text{10}}{{\text{0}}^0}{\text{ + 2}}{{\text{0}}^0}}}{{\text{2}}}} \right){\text{ cos}}\left( {\dfrac{{{\text{10}}{{\text{0}}^0}{\text{ - 2}}{{\text{0}}^0}}}{{\text{2}}}} \right)} \right){\text{ + cos 14}}{{\text{0}}^{\text{0}}}\] ___________(1)
On solving equation 1. We get,
$\Rightarrow$ \[\left( {{\text{cos 10}}{{\text{0}}^{\text{0}}}{\text{ + cos 2}}{{\text{0}}^{\text{0}}}} \right){\text{ + cos 14}}{{\text{0}}^{\text{0}}}{\text{ = 2}}\left( {{\text{cos 6}}{{\text{0}}^{\text{0}}}} \right)\left( {{\text{cos 4}}{{\text{0}}^{\text{0}}}} \right){\text{ + cos 14}}{{\text{0}}^{\text{0}}}\] _________________________ (2)
Now as we know that \[{\text{cos 6}}{{\text{0}}^{\text{0}}}\] = \[\dfrac{{\text{1}}}{{\text{2}}}\].
So, equation 2 becomes,
$\Rightarrow$ \[\left( {{\text{cos 10}}{{\text{0}}^{\text{0}}}{\text{ + cos 2}}{{\text{0}}^{\text{0}}}} \right){\text{ + cos 14}}{{\text{0}}^{\text{0}}}{\text{ = 2}}\left( {\dfrac{{\text{1}}}{{\text{2}}}} \right)\left( {{\text{cos 4}}{{\text{0}}^{\text{0}}}} \right){\text{ + cos 14}}{{\text{0}}^{\text{0}}}\]
$\Rightarrow$ \[\left( {{\text{cos 10}}{{\text{0}}^{\text{0}}}{\text{ + cos 2}}{{\text{0}}^{\text{0}}}} \right){\text{ + cos 14}}{{\text{0}}^{\text{0}}}{\text{ = cos 4}}{{\text{0}}^{\text{0}}}{\text{ + cos 14}}{{\text{0}}^{\text{0}}}\] ________________________ (3)
Now as we know that to find the value of given equation, we had to find the value of \[{\text{cos 4}}{{\text{0}}^{\text{0}}}{\text{ + cos 14}}{{\text{0}}^{\text{0}}}\].
So, applying the trigonometric identity of cos A + cos B in \[{\text{cos 14}}{{\text{0}}^{\text{0}}}{\text{ + cos 4}}{{\text{0}}^{\text{0}}}\].
So, let A = \[{\text{14}}{{\text{0}}^{\text{0}}}\] and B = \[{\text{4}}{{\text{0}}^{\text{0}}}\].
So, equation 3 becomes,
$\Rightarrow$ \[\left( {{\text{cos 10}}{{\text{0}}^{\text{0}}}{\text{ + cos 2}}{{\text{0}}^{\text{0}}}} \right){\text{ + cos 14}}{{\text{0}}^{\text{0}}}{\text{ = }}\left( {{\text{2cos}}\left( {\dfrac{{{\text{14}}{{\text{0}}^{\text{0}}}{\text{ + 4}}{{\text{0}}^{\text{0}}}}}{{\text{2}}}} \right){\text{ cos}}\left( {\dfrac{{{\text{14}}{{\text{0}}^{\text{0}}}{\text{ - 4}}{{\text{0}}^{\text{0}}}}}{{\text{2}}}} \right)} \right)\]
On solving the above equation. It becomes,
$\Rightarrow$ \[\left( {{\text{cos 10}}{{\text{0}}^{\text{0}}}{\text{ + cos 2}}{{\text{0}}^{\text{0}}}} \right){\text{ + cos 14}}{{\text{0}}^{\text{0}}}{\text{ = 2}}\left( {{\text{cos 9}}{{\text{0}}^{\text{0}}}} \right)\left( {{\text{cos 5}}{{\text{0}}^{\text{0}}}} \right)\] __________________________ (4)
Now as we know that \[{\text{cos 9}}{{\text{0}}^{\text{0}}}\] = 0.
So, equation 4 becomes,
$\Rightarrow$ \[{\text{cos 2}}{{\text{0}}^{\text{0}}}{\text{ + cos 10}}{{\text{0}}^{\text{0}}}{\text{ + cos 14}}{{\text{0}}^{\text{0}}}\] = 0
Hence, \[{\text{cos 2}}{{\text{0}}^{\text{0}}}{\text{ + cos 10}}{{\text{0}}^{\text{0}}}{\text{ + cos 14}}{{\text{0}}^{\text{0}}}\] = 0.
Note: Whenever we come up with this type of problem, where we are asked to find the sum of cosine of three different angles then first, we find the sum of cosine of any two angle from them using trigonometric identity which states that cos A + cos B = 2cos\[\left( {\dfrac{{{\text{A + B}}}}{{\text{2}}}} \right)\] cos\[\left( {\dfrac{{{\text{A - B}}}}{{\text{2}}}} \right)\]. And then we are left to find the sum of the cosine of the third angle and the cosine of angles we got from the previous sum. So, we had to again apply the trigonometric identity of cos A + cos B to get the required value of the given equation.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE