Answer
Verified
484.2k+ views
Hint: Use the formula of $\tan 2A$ along with the value of $\tan 30{}^\circ $ , to get a quadratic equation. Solve the quadratic equation to reach the required answer.
Complete step-by-step answer:
We know;
$\tan 30{}^\circ =\dfrac{1}{\sqrt{3}}$
The other commonly used trigonometric values include:
$\tan 0{}^\circ =0$
$\tan 45{}^\circ =1$
$\tan 60{}^\circ =\sqrt{3}$
Also, we have, the formula: $\tan 2A=\dfrac{2\tan A}{1-{{\tan }^{2}}A}$
So, in the above formula substituting $A=15{}^\circ $ .
$\therefore \tan 2A=\dfrac{2\tan A}{1-{{\tan }^{2}}A}$
$\Rightarrow \tan \left( 2\times 15{}^\circ \right)=\dfrac{2\tan 15{}^\circ }{1-{{\tan }^{2}}15{}^\circ }$
$\Rightarrow \tan 30{}^\circ =\dfrac{2\tan 15{}^\circ }{1-{{\tan }^{2}}15{}^\circ }$
Putting the value of $\tan 30{}^\circ $ in the equation, we get;
$\dfrac{1}{\sqrt{3}}=\dfrac{2\tan 15{}^\circ }{1-{{\tan }^{2}}15{}^\circ }$
On cross-multiplication, we get;
$1-{{\tan }^{2}}15{}^\circ =2\sqrt{3}\tan 15{}^\circ $
$\Rightarrow {{\tan }^{2}}15{}^\circ +2\sqrt{3}\tan 15{}^\circ -1=0$
So, the equation we get is a quadratic equation, and one of the roots of this quadratic equation would be the value of $\tan 15{}^\circ $.
We know, for a quadratic equation of the form $a{{x}^{2}}+bx+c=0$ .
$x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
Applying the formula to our quadratic equation, we have;
$\tan 15{}^\circ =\dfrac{-2\sqrt{3}\pm \sqrt{{{\left( 2\sqrt{3} \right)}^{2}}-4\times 1\times \left( -1 \right)}}{2\times 1}$
$\Rightarrow \tan 15{}^\circ =\dfrac{-2\sqrt{3}\pm \sqrt{12+4}}{2}$
$\Rightarrow \tan 15{}^\circ =\dfrac{-2\sqrt{3}\pm \sqrt{16}}{2}$
$\Rightarrow \tan 15{}^\circ =\dfrac{-2\sqrt{3}\pm 4}{2}$
We know, $15{}^\circ $ lies in the first quadrant.
According to the graph of $\tan (x)$ :
$\tan (x)$ is positive when x lies in the first quadrant.
Therefore, $\tan 15{}^\circ $ is also positive.
$\therefore \tan 15{}^\circ =\dfrac{-2\sqrt{3}+4}{2}$
$\Rightarrow \tan 15{}^\circ =\dfrac{\left( -\sqrt{3}+2 \right)}{{}}$
$\therefore \tan 15{}^\circ =2-\sqrt{3}$
Hence, the value of $\tan 15{}^\circ $ is $2-\sqrt{3}$ .
Note: Other useful formulas include:
$\tan (A+B)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}$
$\tan (A-B)=\dfrac{\tan A-\tan B}{1+\tan A\tan B}$
And you are free to use any formula, just substitute the angles according to the need to get the desired values.
We can also find the value of $\tan 15{}^\circ $ using formula: $\tan (A-B)=\dfrac{\tan A-\tan B}{1+\tan A\tan B}$ .
On Substituting A and B in the above formula, we get;
$A=45{}^\circ $
$B=30{}^\circ $
The equation becomes:
$\tan (A-B)=\dfrac{\tan A-\tan B}{1+\tan A\tan B}$
$\Rightarrow \tan (45{}^\circ -30{}^\circ )=\dfrac{\tan 45{}^\circ -\tan 30{}^\circ }{1+\tan 45{}^\circ \tan 30{}^\circ }$
\[\Rightarrow \tan 15{}^\circ =\dfrac{1-\left( \dfrac{1}{\sqrt{3}} \right)}{1+1\times \dfrac{1}{\sqrt{3}}}\]
Point to remember: whenever you try to find the value of $\sin 15{}^\circ $ , don’t use the formula of $\sin 2A$ , instead, go for the formula: $\cos 2A=1-2{{\sin }^{2}}A$ . The reason being, whenever you use the formula of $\sin 2A$ , you get both $\cos A$ and $\sin A$ to be unknown, making it difficult to solve.
Complete step-by-step answer:
We know;
$\tan 30{}^\circ =\dfrac{1}{\sqrt{3}}$
The other commonly used trigonometric values include:
$\tan 0{}^\circ =0$
$\tan 45{}^\circ =1$
$\tan 60{}^\circ =\sqrt{3}$
Also, we have, the formula: $\tan 2A=\dfrac{2\tan A}{1-{{\tan }^{2}}A}$
So, in the above formula substituting $A=15{}^\circ $ .
$\therefore \tan 2A=\dfrac{2\tan A}{1-{{\tan }^{2}}A}$
$\Rightarrow \tan \left( 2\times 15{}^\circ \right)=\dfrac{2\tan 15{}^\circ }{1-{{\tan }^{2}}15{}^\circ }$
$\Rightarrow \tan 30{}^\circ =\dfrac{2\tan 15{}^\circ }{1-{{\tan }^{2}}15{}^\circ }$
Putting the value of $\tan 30{}^\circ $ in the equation, we get;
$\dfrac{1}{\sqrt{3}}=\dfrac{2\tan 15{}^\circ }{1-{{\tan }^{2}}15{}^\circ }$
On cross-multiplication, we get;
$1-{{\tan }^{2}}15{}^\circ =2\sqrt{3}\tan 15{}^\circ $
$\Rightarrow {{\tan }^{2}}15{}^\circ +2\sqrt{3}\tan 15{}^\circ -1=0$
So, the equation we get is a quadratic equation, and one of the roots of this quadratic equation would be the value of $\tan 15{}^\circ $.
We know, for a quadratic equation of the form $a{{x}^{2}}+bx+c=0$ .
$x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
Applying the formula to our quadratic equation, we have;
$\tan 15{}^\circ =\dfrac{-2\sqrt{3}\pm \sqrt{{{\left( 2\sqrt{3} \right)}^{2}}-4\times 1\times \left( -1 \right)}}{2\times 1}$
$\Rightarrow \tan 15{}^\circ =\dfrac{-2\sqrt{3}\pm \sqrt{12+4}}{2}$
$\Rightarrow \tan 15{}^\circ =\dfrac{-2\sqrt{3}\pm \sqrt{16}}{2}$
$\Rightarrow \tan 15{}^\circ =\dfrac{-2\sqrt{3}\pm 4}{2}$
We know, $15{}^\circ $ lies in the first quadrant.
According to the graph of $\tan (x)$ :
$\tan (x)$ is positive when x lies in the first quadrant.
Therefore, $\tan 15{}^\circ $ is also positive.
$\therefore \tan 15{}^\circ =\dfrac{-2\sqrt{3}+4}{2}$
$\Rightarrow \tan 15{}^\circ =\dfrac{\left( -\sqrt{3}+2 \right)}{{}}$
$\therefore \tan 15{}^\circ =2-\sqrt{3}$
Hence, the value of $\tan 15{}^\circ $ is $2-\sqrt{3}$ .
Note: Other useful formulas include:
$\tan (A+B)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}$
$\tan (A-B)=\dfrac{\tan A-\tan B}{1+\tan A\tan B}$
And you are free to use any formula, just substitute the angles according to the need to get the desired values.
We can also find the value of $\tan 15{}^\circ $ using formula: $\tan (A-B)=\dfrac{\tan A-\tan B}{1+\tan A\tan B}$ .
On Substituting A and B in the above formula, we get;
$A=45{}^\circ $
$B=30{}^\circ $
The equation becomes:
$\tan (A-B)=\dfrac{\tan A-\tan B}{1+\tan A\tan B}$
$\Rightarrow \tan (45{}^\circ -30{}^\circ )=\dfrac{\tan 45{}^\circ -\tan 30{}^\circ }{1+\tan 45{}^\circ \tan 30{}^\circ }$
\[\Rightarrow \tan 15{}^\circ =\dfrac{1-\left( \dfrac{1}{\sqrt{3}} \right)}{1+1\times \dfrac{1}{\sqrt{3}}}\]
Point to remember: whenever you try to find the value of $\sin 15{}^\circ $ , don’t use the formula of $\sin 2A$ , instead, go for the formula: $\cos 2A=1-2{{\sin }^{2}}A$ . The reason being, whenever you use the formula of $\sin 2A$ , you get both $\cos A$ and $\sin A$ to be unknown, making it difficult to solve.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE