
Find the value of the sum of the trigonometric functions $ \cot x+\cot \left( {{60}^{o}}+x \right)+\cot \left( {{120}^{o}}+x \right) $ ?
(a) $ \cot 3x $
(b) $ \tan 3x $
(c) $ 3\tan 3x $
(d) $ \dfrac{3-9{{\tan }^{2}}x}{3\tan x-{{\tan }^{3}}x} $
Answer
593.1k+ views
Hint: We start solving problem by using the result \[\cot \left( A+B \right)=\dfrac{\cot \left( A \right).\cot \left( B \right)-1}{\cot \left( A \right)+\cot \left( B \right)}\] for the terms given in $ \cot x+\cot \left( {{60}^{o}}+x \right)+\cot \left( {{120}^{o}}+x \right) $ . We substitute the values required in the equations obtained and we get the answer in cotangent functions. Since the given options are present in tangent functions, we use the fact that the tangent function is inverse of the cotangent function to get the final answer.
Complete step-by-step answer:
Given that we need to find the value of $ \cot x+\cot \left( {{60}^{o}}+x \right)+\cot \left( {{120}^{o}}+x \right) $ . Let us assume the value is ‘y’.
We have got $ y=\cot x+\cot \left( {{60}^{o}}+x \right)+\cot \left( {{120}^{o}}+x \right) $ ---(1).
We know that \[\cot \left( A+B \right)=\dfrac{\cot \left( A \right).\cot \left( B \right)-1}{\cot \left( A \right)+\cot \left( B \right)}\]. Let us substitute this in equation (1).
So, we have got $ y=\cot x+\dfrac{\cot \left( {{60}^{o}} \right).\cot x-1}{\cot \left( {{60}^{o}} \right)+\cot x}+\dfrac{\cot \left( {{120}^{o}} \right).\cot x-1}{\cot \left( {{120}^{o}} \right)+\cot x} $ ---(2).
We know that the values of $ \cot \left( {{60}^{o}} \right) $ and $ \cot \left( {{120}^{o}} \right) $ are $ \dfrac{1}{\sqrt{3}} $ and $ \dfrac{-1}{\sqrt{3}} $ . Let us substitute these in equation (2).
$\Rightarrow$ $ y=\cot x+\dfrac{\dfrac{1}{\sqrt{3}}.\cot x-1}{\dfrac{1}{\sqrt{3}}+\cot x}+\dfrac{\dfrac{-1}{\sqrt{3}}.\cot x-1}{\dfrac{-1}{\sqrt{3}}+\cot x} $ .
$\Rightarrow$ $ y=\cot x+\dfrac{\dfrac{\cot x-\sqrt{3}}{\sqrt{3}}}{\dfrac{1+\sqrt{3}\cot x}{\sqrt{3}}}+\dfrac{\dfrac{-\cot x-\sqrt{3}}{\sqrt{3}}}{\dfrac{-1+\sqrt{3}\cot x}{\sqrt{3}}} $ .
$\Rightarrow$ $ y=\cot x+\dfrac{\cot x-\sqrt{3}}{1+\sqrt{3}\cot x}+\dfrac{-\cot x-\sqrt{3}}{-1+\sqrt{3}\cot x} $ .
$\Rightarrow$ \[y=\cot x+\dfrac{\left( \left( \cot x-\sqrt{3} \right)\times \left( -1+\sqrt{3}\cot x \right) \right)+\left( \left( -\cot x-\sqrt{3} \right)\times \left( 1+\sqrt{3}\cot x \right) \right)}{\left( 1+\sqrt{3}\cot x \right)\times \left( -1+\sqrt{3}\cot x \right)}\].
$\Rightarrow$ \[y=\cot x+\dfrac{\left( -\cot x+\sqrt{3}{{\cot }^{2}}x+\sqrt{3}-3\cot x \right)+\left( -\cot x-\sqrt{3}-\sqrt{3}{{\cot }^{2}}x-3\cot x \right)}{-1+\sqrt{3}\cot x-\sqrt{3}\cot x+3{{\cot }^{2}}x}\].
$\Rightarrow$ \[y=\cot x+\dfrac{-8\cot x}{-1+3{{\cot }^{2}}x}\].
$\Rightarrow$ \[y=\dfrac{\left( \cot x\times \left( -1+3{{\cot }^{2}}x \right) \right)+\left( -8\cot x \right)}{-1+3{{\cot }^{2}}x}\].
$\Rightarrow$ \[y=\dfrac{-\cot x+3{{\cot }^{3}}x-8\cot x}{-1+3{{\cot }^{2}}x}\].
$\Rightarrow$ \[y=\dfrac{3{{\cot }^{3}}x-9\cot x}{-1+3{{\cot }^{2}}x}\].
$\Rightarrow$ \[y=\dfrac{3{{\cot }^{3}}x-9\cot x}{3{{\cot }^{2}}x-1}\]---(3).
We know that $ \cot x=\dfrac{1}{\tan x} $ . Let us substitute this in equation (3).
$\Rightarrow$ \[y=\dfrac{\left( \dfrac{3}{{{\tan }^{3}}x} \right)-\left( \dfrac{9}{\tan x} \right)}{-1+\left( \dfrac{3}{{{\tan }^{2}}x} \right)}\].
$\Rightarrow$ \[y=\dfrac{\left( \dfrac{3-9{{\tan }^{2}}x}{{{\tan }^{3}}x} \right)}{\left( \dfrac{-{{\tan }^{2}}x+3}{{{\tan }^{2}}x} \right)}\].
$\Rightarrow$ \[y=\dfrac{\left( \dfrac{3-9{{\tan }^{2}}x}{\tan x} \right)}{-{{\tan }^{2}}x+3}\].
$\Rightarrow$ \[y=\dfrac{3-9{{\tan }^{2}}x}{\left( \tan x \right)\times \left( -{{\tan }^{2}}x+3 \right)}\].
$\Rightarrow$ \[y=\dfrac{3-9{{\tan }^{2}}x}{3\tan x-{{\tan }^{3}}x}\].
∴ The value of $ \cot x+\cot \left( {{60}^{o}}+x \right)+\cot \left( {{120}^{o}}+x \right) $ is \[\dfrac{3-9{{\tan }^{2}}x}{3\tan x-{{\tan }^{3}}x}\].
So, the correct answer is “Option D”.
Note: Alternatively, we can check the options by assigning a value for ‘x’ which is between $ {{0}^{o}} $ and $ {{90}^{o}} $. Similarly, we can expect tangent, cosine and sine functions instead of given cotangent functions. Whatever the trigonometric function provided in the problem, we start and solve the problem by using the same procedure.
Complete step-by-step answer:
Given that we need to find the value of $ \cot x+\cot \left( {{60}^{o}}+x \right)+\cot \left( {{120}^{o}}+x \right) $ . Let us assume the value is ‘y’.
We have got $ y=\cot x+\cot \left( {{60}^{o}}+x \right)+\cot \left( {{120}^{o}}+x \right) $ ---(1).
We know that \[\cot \left( A+B \right)=\dfrac{\cot \left( A \right).\cot \left( B \right)-1}{\cot \left( A \right)+\cot \left( B \right)}\]. Let us substitute this in equation (1).
So, we have got $ y=\cot x+\dfrac{\cot \left( {{60}^{o}} \right).\cot x-1}{\cot \left( {{60}^{o}} \right)+\cot x}+\dfrac{\cot \left( {{120}^{o}} \right).\cot x-1}{\cot \left( {{120}^{o}} \right)+\cot x} $ ---(2).
We know that the values of $ \cot \left( {{60}^{o}} \right) $ and $ \cot \left( {{120}^{o}} \right) $ are $ \dfrac{1}{\sqrt{3}} $ and $ \dfrac{-1}{\sqrt{3}} $ . Let us substitute these in equation (2).
$\Rightarrow$ $ y=\cot x+\dfrac{\dfrac{1}{\sqrt{3}}.\cot x-1}{\dfrac{1}{\sqrt{3}}+\cot x}+\dfrac{\dfrac{-1}{\sqrt{3}}.\cot x-1}{\dfrac{-1}{\sqrt{3}}+\cot x} $ .
$\Rightarrow$ $ y=\cot x+\dfrac{\dfrac{\cot x-\sqrt{3}}{\sqrt{3}}}{\dfrac{1+\sqrt{3}\cot x}{\sqrt{3}}}+\dfrac{\dfrac{-\cot x-\sqrt{3}}{\sqrt{3}}}{\dfrac{-1+\sqrt{3}\cot x}{\sqrt{3}}} $ .
$\Rightarrow$ $ y=\cot x+\dfrac{\cot x-\sqrt{3}}{1+\sqrt{3}\cot x}+\dfrac{-\cot x-\sqrt{3}}{-1+\sqrt{3}\cot x} $ .
$\Rightarrow$ \[y=\cot x+\dfrac{\left( \left( \cot x-\sqrt{3} \right)\times \left( -1+\sqrt{3}\cot x \right) \right)+\left( \left( -\cot x-\sqrt{3} \right)\times \left( 1+\sqrt{3}\cot x \right) \right)}{\left( 1+\sqrt{3}\cot x \right)\times \left( -1+\sqrt{3}\cot x \right)}\].
$\Rightarrow$ \[y=\cot x+\dfrac{\left( -\cot x+\sqrt{3}{{\cot }^{2}}x+\sqrt{3}-3\cot x \right)+\left( -\cot x-\sqrt{3}-\sqrt{3}{{\cot }^{2}}x-3\cot x \right)}{-1+\sqrt{3}\cot x-\sqrt{3}\cot x+3{{\cot }^{2}}x}\].
$\Rightarrow$ \[y=\cot x+\dfrac{-8\cot x}{-1+3{{\cot }^{2}}x}\].
$\Rightarrow$ \[y=\dfrac{\left( \cot x\times \left( -1+3{{\cot }^{2}}x \right) \right)+\left( -8\cot x \right)}{-1+3{{\cot }^{2}}x}\].
$\Rightarrow$ \[y=\dfrac{-\cot x+3{{\cot }^{3}}x-8\cot x}{-1+3{{\cot }^{2}}x}\].
$\Rightarrow$ \[y=\dfrac{3{{\cot }^{3}}x-9\cot x}{-1+3{{\cot }^{2}}x}\].
$\Rightarrow$ \[y=\dfrac{3{{\cot }^{3}}x-9\cot x}{3{{\cot }^{2}}x-1}\]---(3).
We know that $ \cot x=\dfrac{1}{\tan x} $ . Let us substitute this in equation (3).
$\Rightarrow$ \[y=\dfrac{\left( \dfrac{3}{{{\tan }^{3}}x} \right)-\left( \dfrac{9}{\tan x} \right)}{-1+\left( \dfrac{3}{{{\tan }^{2}}x} \right)}\].
$\Rightarrow$ \[y=\dfrac{\left( \dfrac{3-9{{\tan }^{2}}x}{{{\tan }^{3}}x} \right)}{\left( \dfrac{-{{\tan }^{2}}x+3}{{{\tan }^{2}}x} \right)}\].
$\Rightarrow$ \[y=\dfrac{\left( \dfrac{3-9{{\tan }^{2}}x}{\tan x} \right)}{-{{\tan }^{2}}x+3}\].
$\Rightarrow$ \[y=\dfrac{3-9{{\tan }^{2}}x}{\left( \tan x \right)\times \left( -{{\tan }^{2}}x+3 \right)}\].
$\Rightarrow$ \[y=\dfrac{3-9{{\tan }^{2}}x}{3\tan x-{{\tan }^{3}}x}\].
∴ The value of $ \cot x+\cot \left( {{60}^{o}}+x \right)+\cot \left( {{120}^{o}}+x \right) $ is \[\dfrac{3-9{{\tan }^{2}}x}{3\tan x-{{\tan }^{3}}x}\].
So, the correct answer is “Option D”.
Note: Alternatively, we can check the options by assigning a value for ‘x’ which is between $ {{0}^{o}} $ and $ {{90}^{o}} $. Similarly, we can expect tangent, cosine and sine functions instead of given cotangent functions. Whatever the trigonometric function provided in the problem, we start and solve the problem by using the same procedure.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

