Answer
Verified
469.2k+ views
Hint: We start solving problem by using the result \[\cot \left( A+B \right)=\dfrac{\cot \left( A \right).\cot \left( B \right)-1}{\cot \left( A \right)+\cot \left( B \right)}\] for the terms given in $ \cot x+\cot \left( {{60}^{o}}+x \right)+\cot \left( {{120}^{o}}+x \right) $ . We substitute the values required in the equations obtained and we get the answer in cotangent functions. Since the given options are present in tangent functions, we use the fact that the tangent function is inverse of the cotangent function to get the final answer.
Complete step-by-step answer:
Given that we need to find the value of $ \cot x+\cot \left( {{60}^{o}}+x \right)+\cot \left( {{120}^{o}}+x \right) $ . Let us assume the value is ‘y’.
We have got $ y=\cot x+\cot \left( {{60}^{o}}+x \right)+\cot \left( {{120}^{o}}+x \right) $ ---(1).
We know that \[\cot \left( A+B \right)=\dfrac{\cot \left( A \right).\cot \left( B \right)-1}{\cot \left( A \right)+\cot \left( B \right)}\]. Let us substitute this in equation (1).
So, we have got $ y=\cot x+\dfrac{\cot \left( {{60}^{o}} \right).\cot x-1}{\cot \left( {{60}^{o}} \right)+\cot x}+\dfrac{\cot \left( {{120}^{o}} \right).\cot x-1}{\cot \left( {{120}^{o}} \right)+\cot x} $ ---(2).
We know that the values of $ \cot \left( {{60}^{o}} \right) $ and $ \cot \left( {{120}^{o}} \right) $ are $ \dfrac{1}{\sqrt{3}} $ and $ \dfrac{-1}{\sqrt{3}} $ . Let us substitute these in equation (2).
$\Rightarrow$ $ y=\cot x+\dfrac{\dfrac{1}{\sqrt{3}}.\cot x-1}{\dfrac{1}{\sqrt{3}}+\cot x}+\dfrac{\dfrac{-1}{\sqrt{3}}.\cot x-1}{\dfrac{-1}{\sqrt{3}}+\cot x} $ .
$\Rightarrow$ $ y=\cot x+\dfrac{\dfrac{\cot x-\sqrt{3}}{\sqrt{3}}}{\dfrac{1+\sqrt{3}\cot x}{\sqrt{3}}}+\dfrac{\dfrac{-\cot x-\sqrt{3}}{\sqrt{3}}}{\dfrac{-1+\sqrt{3}\cot x}{\sqrt{3}}} $ .
$\Rightarrow$ $ y=\cot x+\dfrac{\cot x-\sqrt{3}}{1+\sqrt{3}\cot x}+\dfrac{-\cot x-\sqrt{3}}{-1+\sqrt{3}\cot x} $ .
$\Rightarrow$ \[y=\cot x+\dfrac{\left( \left( \cot x-\sqrt{3} \right)\times \left( -1+\sqrt{3}\cot x \right) \right)+\left( \left( -\cot x-\sqrt{3} \right)\times \left( 1+\sqrt{3}\cot x \right) \right)}{\left( 1+\sqrt{3}\cot x \right)\times \left( -1+\sqrt{3}\cot x \right)}\].
$\Rightarrow$ \[y=\cot x+\dfrac{\left( -\cot x+\sqrt{3}{{\cot }^{2}}x+\sqrt{3}-3\cot x \right)+\left( -\cot x-\sqrt{3}-\sqrt{3}{{\cot }^{2}}x-3\cot x \right)}{-1+\sqrt{3}\cot x-\sqrt{3}\cot x+3{{\cot }^{2}}x}\].
$\Rightarrow$ \[y=\cot x+\dfrac{-8\cot x}{-1+3{{\cot }^{2}}x}\].
$\Rightarrow$ \[y=\dfrac{\left( \cot x\times \left( -1+3{{\cot }^{2}}x \right) \right)+\left( -8\cot x \right)}{-1+3{{\cot }^{2}}x}\].
$\Rightarrow$ \[y=\dfrac{-\cot x+3{{\cot }^{3}}x-8\cot x}{-1+3{{\cot }^{2}}x}\].
$\Rightarrow$ \[y=\dfrac{3{{\cot }^{3}}x-9\cot x}{-1+3{{\cot }^{2}}x}\].
$\Rightarrow$ \[y=\dfrac{3{{\cot }^{3}}x-9\cot x}{3{{\cot }^{2}}x-1}\]---(3).
We know that $ \cot x=\dfrac{1}{\tan x} $ . Let us substitute this in equation (3).
$\Rightarrow$ \[y=\dfrac{\left( \dfrac{3}{{{\tan }^{3}}x} \right)-\left( \dfrac{9}{\tan x} \right)}{-1+\left( \dfrac{3}{{{\tan }^{2}}x} \right)}\].
$\Rightarrow$ \[y=\dfrac{\left( \dfrac{3-9{{\tan }^{2}}x}{{{\tan }^{3}}x} \right)}{\left( \dfrac{-{{\tan }^{2}}x+3}{{{\tan }^{2}}x} \right)}\].
$\Rightarrow$ \[y=\dfrac{\left( \dfrac{3-9{{\tan }^{2}}x}{\tan x} \right)}{-{{\tan }^{2}}x+3}\].
$\Rightarrow$ \[y=\dfrac{3-9{{\tan }^{2}}x}{\left( \tan x \right)\times \left( -{{\tan }^{2}}x+3 \right)}\].
$\Rightarrow$ \[y=\dfrac{3-9{{\tan }^{2}}x}{3\tan x-{{\tan }^{3}}x}\].
∴ The value of $ \cot x+\cot \left( {{60}^{o}}+x \right)+\cot \left( {{120}^{o}}+x \right) $ is \[\dfrac{3-9{{\tan }^{2}}x}{3\tan x-{{\tan }^{3}}x}\].
So, the correct answer is “Option D”.
Note: Alternatively, we can check the options by assigning a value for ‘x’ which is between $ {{0}^{o}} $ and $ {{90}^{o}} $. Similarly, we can expect tangent, cosine and sine functions instead of given cotangent functions. Whatever the trigonometric function provided in the problem, we start and solve the problem by using the same procedure.
Complete step-by-step answer:
Given that we need to find the value of $ \cot x+\cot \left( {{60}^{o}}+x \right)+\cot \left( {{120}^{o}}+x \right) $ . Let us assume the value is ‘y’.
We have got $ y=\cot x+\cot \left( {{60}^{o}}+x \right)+\cot \left( {{120}^{o}}+x \right) $ ---(1).
We know that \[\cot \left( A+B \right)=\dfrac{\cot \left( A \right).\cot \left( B \right)-1}{\cot \left( A \right)+\cot \left( B \right)}\]. Let us substitute this in equation (1).
So, we have got $ y=\cot x+\dfrac{\cot \left( {{60}^{o}} \right).\cot x-1}{\cot \left( {{60}^{o}} \right)+\cot x}+\dfrac{\cot \left( {{120}^{o}} \right).\cot x-1}{\cot \left( {{120}^{o}} \right)+\cot x} $ ---(2).
We know that the values of $ \cot \left( {{60}^{o}} \right) $ and $ \cot \left( {{120}^{o}} \right) $ are $ \dfrac{1}{\sqrt{3}} $ and $ \dfrac{-1}{\sqrt{3}} $ . Let us substitute these in equation (2).
$\Rightarrow$ $ y=\cot x+\dfrac{\dfrac{1}{\sqrt{3}}.\cot x-1}{\dfrac{1}{\sqrt{3}}+\cot x}+\dfrac{\dfrac{-1}{\sqrt{3}}.\cot x-1}{\dfrac{-1}{\sqrt{3}}+\cot x} $ .
$\Rightarrow$ $ y=\cot x+\dfrac{\dfrac{\cot x-\sqrt{3}}{\sqrt{3}}}{\dfrac{1+\sqrt{3}\cot x}{\sqrt{3}}}+\dfrac{\dfrac{-\cot x-\sqrt{3}}{\sqrt{3}}}{\dfrac{-1+\sqrt{3}\cot x}{\sqrt{3}}} $ .
$\Rightarrow$ $ y=\cot x+\dfrac{\cot x-\sqrt{3}}{1+\sqrt{3}\cot x}+\dfrac{-\cot x-\sqrt{3}}{-1+\sqrt{3}\cot x} $ .
$\Rightarrow$ \[y=\cot x+\dfrac{\left( \left( \cot x-\sqrt{3} \right)\times \left( -1+\sqrt{3}\cot x \right) \right)+\left( \left( -\cot x-\sqrt{3} \right)\times \left( 1+\sqrt{3}\cot x \right) \right)}{\left( 1+\sqrt{3}\cot x \right)\times \left( -1+\sqrt{3}\cot x \right)}\].
$\Rightarrow$ \[y=\cot x+\dfrac{\left( -\cot x+\sqrt{3}{{\cot }^{2}}x+\sqrt{3}-3\cot x \right)+\left( -\cot x-\sqrt{3}-\sqrt{3}{{\cot }^{2}}x-3\cot x \right)}{-1+\sqrt{3}\cot x-\sqrt{3}\cot x+3{{\cot }^{2}}x}\].
$\Rightarrow$ \[y=\cot x+\dfrac{-8\cot x}{-1+3{{\cot }^{2}}x}\].
$\Rightarrow$ \[y=\dfrac{\left( \cot x\times \left( -1+3{{\cot }^{2}}x \right) \right)+\left( -8\cot x \right)}{-1+3{{\cot }^{2}}x}\].
$\Rightarrow$ \[y=\dfrac{-\cot x+3{{\cot }^{3}}x-8\cot x}{-1+3{{\cot }^{2}}x}\].
$\Rightarrow$ \[y=\dfrac{3{{\cot }^{3}}x-9\cot x}{-1+3{{\cot }^{2}}x}\].
$\Rightarrow$ \[y=\dfrac{3{{\cot }^{3}}x-9\cot x}{3{{\cot }^{2}}x-1}\]---(3).
We know that $ \cot x=\dfrac{1}{\tan x} $ . Let us substitute this in equation (3).
$\Rightarrow$ \[y=\dfrac{\left( \dfrac{3}{{{\tan }^{3}}x} \right)-\left( \dfrac{9}{\tan x} \right)}{-1+\left( \dfrac{3}{{{\tan }^{2}}x} \right)}\].
$\Rightarrow$ \[y=\dfrac{\left( \dfrac{3-9{{\tan }^{2}}x}{{{\tan }^{3}}x} \right)}{\left( \dfrac{-{{\tan }^{2}}x+3}{{{\tan }^{2}}x} \right)}\].
$\Rightarrow$ \[y=\dfrac{\left( \dfrac{3-9{{\tan }^{2}}x}{\tan x} \right)}{-{{\tan }^{2}}x+3}\].
$\Rightarrow$ \[y=\dfrac{3-9{{\tan }^{2}}x}{\left( \tan x \right)\times \left( -{{\tan }^{2}}x+3 \right)}\].
$\Rightarrow$ \[y=\dfrac{3-9{{\tan }^{2}}x}{3\tan x-{{\tan }^{3}}x}\].
∴ The value of $ \cot x+\cot \left( {{60}^{o}}+x \right)+\cot \left( {{120}^{o}}+x \right) $ is \[\dfrac{3-9{{\tan }^{2}}x}{3\tan x-{{\tan }^{3}}x}\].
So, the correct answer is “Option D”.
Note: Alternatively, we can check the options by assigning a value for ‘x’ which is between $ {{0}^{o}} $ and $ {{90}^{o}} $. Similarly, we can expect tangent, cosine and sine functions instead of given cotangent functions. Whatever the trigonometric function provided in the problem, we start and solve the problem by using the same procedure.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE